

LECTURE NOTES

 DATA STRUCTURE

Prepared By Manas Ranjan Ojha, HOD,

Computer Science Engineering.

Data Structure (Syllabus)

Semester & Branch: 3rd sem CSE/IT Teachers
Assessment : 10 Marks Theory: 4 Periods per Week Class Test :20 Marks
Total Periods: 60 Periods per Semester End Semester Exam
: 70 Marks Examination: 3 Hours TOTAL MARKS : 100 Marks

Objective :

The effectiveness of implementation of any application in computer
mainly depends on the that how effectively its information can be
stored in the computer. For this purpose various -structures are used.
This paper will expose the students to various fundamentals
structures arrays, stacks, queues, trees etc. It will also expose the
students to some fundamental, I/0 manipulation techniques like
sorting, searching etc

• INTRODUCTION:

• Explain Data, Information, data types
• Define data structure & Explain different operations
• Explain Abstract data types
• Discuss Algorithm & its complexity
• Explain Time, space tradeoff

04

• STRING PROCESSING
• Explain Basic Terminology, Storing Strings
• State Character Data Type,
• Discuss String Operations
3.0 ARRAYS

03

07

• Give Introduction about array,
• Discuss Linear arrays, representation of linear array In memory
• Explain traversing linear arrays, inserting & deleting elements

• Discuss multidimensional arrays, representation of two
dimensional arrays in memory (row major order & column
major order), and pointers

• Explain sparse matrices.

• STACKS & QUEUES 08
• Give fundamental idea about Stacks and queues
• Explain array representation of Stack
• Explain arithmetic expression ,polish notation & Conversion
• Discuss application of stack, recursion
• Discuss queues, circular queue, priority queues.

• LINKED LIST 08

• Give Introduction about linked list
• Explain representation of linked list in memory

• Discuss traversing a linked list, searching,
• Discuss garbage collection.
• Explain Insertion into a linked list, Deletion from a linked list,

header linked list

• TREE 08
• Explain Basic terminology of Tree
• Discuss Binary tree, its representation and traversal, binary

search tree, searching,
• Explain insertion & deletion in a binary search trees

• GRAPHS 06

• Explain graph terminology & its representation,
• Explain Adjacency Matrix, Path Matrix

• SORTING SEARCHING & MERGING 08
• Discuss Algorithms for Bubble sort, Quick sort,
• Merging
• Linear searching, Binary searching.

• FILE ORGANIZATION 08
• Discuss Different types of files organization and their access method,
• Introduction to Hashing,Hash function,collision resolution,open

addressing..

Books

• Data Structure by S. Lipschutz - (Schaum Series)
• Introduction to Data Structure in C by :A.N.Kamthane; Pearson Education
• Data Strcture using C by Reema Thereja, Oxford University Press

Data

INTRODUCTION

Data is a set of values of qualitative or quantitative variables. Data in

computing (or data processing) is represented in a structure that is

often tabular (represented by rows and columns), a tree (a set of

nodes with parent-children relationship), or a graph (a set of

connected nodes). Data is typically the result of measurements and

can be visualized using graphs or images.

Data as an abstract concept can be viewed as the lowest level of

abstraction, from which information HYPERLINK

"http://en.wikipedia.org/wiki/Information" HYPERLINK

"http://en.wikipedia.org/wiki/Information" HYPERLINK

"http://en.wikipedia.org/wiki/Information" and then knowledge

HYPERLINK "http://en.wikipedia.org/wiki/Knowledge" HYPERLINK

"http://en.wikipedia.org/wiki/Knowledge" HYPERLINK

"http://en.wikipedia.org/wiki/Knowledge" are derived.

Unprocessed data which is also known as raw data refers to a

collection of numbers, characters and is a relative term; data

processing commonly occurs by stages, and the "processed data"

from one stage may be considered the "raw data" of the next. Field

data refers to raw data that is collected in an uncontrolled

environment. Experimental data refers to data that is generated

within the context of a scientific investigation by observation and

recording.

Information

Information is that which informs us with some valid meaning, i.e.

that from which data can be derived. Information is conveyed either

as the content of a message or through direct or indirect observation

of some thing. Information can be encoded into various forms for

transmission and interpretation. For example, information may be

encoded into signs, and transmitted via signals.

http://en.wikipedia.org/wiki/Set_%28mathematics%29
http://en.wikipedia.org/wiki/Value_%28computer_science%29
http://en.wikipedia.org/wiki/Qualitative_data
http://en.wikipedia.org/wiki/Row_%28database%29
http://en.wikipedia.org/wiki/Column_%28database%29
http://en.wikipedia.org/wiki/Tree_structure
http://en.wikipedia.org/wiki/Set_%28mathematics%29
http://en.wikipedia.org/wiki/Node_%28graph_theory%29
http://en.wikipedia.org/wiki/Parent
http://en.wikipedia.org/wiki/Children
http://en.wikipedia.org/wiki/Relation_%28database%29
http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://en.wikipedia.org/wiki/Interconnected
http://en.wikipedia.org/wiki/Abstraction
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Knowledge
http://en.wikipedia.org/wiki/Knowledge
http://en.wikipedia.org/wiki/Knowledge
http://en.wikipedia.org/wiki/Knowledge
http://en.wikipedia.org/wiki/Number
http://en.wikipedia.org/wiki/Character_%28computing%29
http://en.wikipedia.org/wiki/Field_work
http://en.wikipedia.org/wiki/Field_work
http://en.wikipedia.org/wiki/Experimental_data
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Conveyed_concept
http://en.wikipedia.org/wiki/Message
http://en.wikipedia.org/wiki/Observation
http://en.wikipedia.org/wiki/Object_%28philosophy%29
http://en.wikipedia.org/wiki/Code
http://en.wikipedia.org/wiki/Language_interpretation
http://en.wikipedia.org/wiki/Sign_%28semiotics%29

Information resolves uncertainty. The uncertainty of an event is

measured by its probability of occurrence and is inversely

proportional to that. The more uncertain an event, the more

information is required to resolve uncertainty of that event. In other

words, information is the message having different meanings in

different contexts. Thus the concept of information becomes closely

related to notions of constraint, communication, control, data,

instruction, knowledge, meaning,

understanding, perception & representation.

Data Type

Data types are used within type systems, which offer various ways of

defining, implementing and using the data. Different type systems

ensure varying degrees of type safety.

Almost all programming languages explicitly include the notion of

data type. Though different languages may use different terminology.

Common data types may include:

 Integers,

 Booleans,

 Characters,

 Floating-point numbers,

 Alphanumeric strings.

For example, in the Java programming language, the "int" type

represents the set of 32-bit HYPERLINK

"http://en.wikipedia.org/wiki/32-bit" HYPERLINK

"http://en.wikipedia.org/wiki/Integer_%28computer_science%29"

HYPERLINK "http://en.wikipedia.org/wiki/32-bit"integers ranging in

value from -2,147,483,648 to 2,147,483,647, as well as the

http://en.wikipedia.org/wiki/Uncertainty
http://en.wikipedia.org/wiki/Meaning_%28linguistics%29
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/32-bit

operations that can be performed on integers, such as addition,

subtraction, and multiplication. Colors, on the other hand, are

represented by three bytes denoting the amounts each of red, green,

and blue, and one string representing that color's name; allowable

operations include addition and subtraction, but not multiplication.

Most programming languages also allow the programmer to define

additional data types, usually by combining multiple elements of

other types and defining the valid operations of the new data type.

For example, a programmer might create a new data type named

"complex number" that would include real and imaginary parts. A

data type also represents a constraint placed upon the interpretation

of data in a type system, describing representation, interpretation and

structure of values or objects stored in computer memory. The type

system uses data type information to check correctness

HYPERLINK

"http://en.wikipedia.org/wiki/Correctness_of_computer_programs"

HYPERLINK

"http://en.wikipedia.org/wiki/Correctness_of_computer_programs"

HYPERLINK

"http://en.wikipedia.org/wiki/Correctness_of_computer_programs"

HYPERLINK

"http://en.wikipedia.org/wiki/Correctness_of_computer_programs"

HYPERLINK

"http://en.wikipedia.org/wiki/Correctness_of_computer_programs"

HYPERLINK

"http://en.wikipedia.org/wiki/Correctness_of_computer_programs"of

HYPERLINK

"http://en.wikipedia.org/wiki/Correctness_of_computer_programs

" HYPERLINK

"http://en.wikipedia.org/wiki/Correctness_of_computer_programs

" HYPERLINK

http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs

"http://en.wikipedia.org/wiki/Correctness_of_computer_programs

" HYPERLINK

"http://en.wikipedia.org/wiki/Correctness_of_computer_programs"

HYPERLINK

"http://en.wikipedia.org/wiki/Correctness_of_computer_programs"

HYPERLINK

"http://en.wikipedia.org/wiki/Correctness_of_computer_programs"co

mputer HYPERLINK

"http://en.wikipedia.org/wiki/Correctness_of_computer_programs"

HYPERLINK

"http://en.wikipedia.org/wiki/Correctness_of_computer_programs"

HYPERLINK

"http://en.wikipedia.org/wiki/Correctness_of_computer_programs"

HYPERLINK

"http://en.wikipedia.org/wiki/Correctness_of_computer_programs"

HYPERLINK

"http://en.wikipedia.org/wiki/Correctness_of_computer_programs"

HYPERLINK

"http://en.wikipedia.org/wiki/Correctness_of_computer_programs"pro

grams that

access or manipulate the data.

Classes of data types

There are different classes of data types as given below.

 Primitive data type

 Composite data type

 En-numerated data type

 Abstract data type

 Utility data type

 Other data type

http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Correctness_of_computer_programs

Primitive data types

All data in computers based on digital electronics is represented as

bits (alternatives 0 and 1) on the lowest level. The smallest

addressable unit of data is usually a group of bits called a byte

(usually an octet, which is 8 bits). The unit processed by machine

code instructions is called a word (as of 2011, typically 32 or 64 bits).

Most instructions interpret the word as a binary number, such that a

32-bit word can represent unsigned integer values from 0 to

or signed integer values from to . Because of two

HYPERLINK "http://en.wikipedia.org/wiki/Two%27s_complement"

HYPERLINK "http://en.wikipedia.org/wiki/Two%27s_complement"

HYPERLINK "http://en.wikipedia.org/wiki/Two%27s_complement"'

HYPERLINK "http://en.wikipedia.org/wiki/Two%27s_complement"

HYPERLINK "http://en.wikipedia.org/wiki/Two%27s_complement"

HYPERLINK "http://en.wikipedia.org/wiki/Two%27s_complement"s

complement, the machine language and machine doesn't need to

distinguish between these unsigned and signed data types for the

most part.

There is a specific set of arithmetic instructions that use a different

interpretation of the bits in word as a floating-point number. Machine

data types need to be exposed or made available in systems or low-

level HYPERLINK "http://en.wikipedia.org/wiki/Low-

level_programming_language" HYPERLINK

"http://en.wikipedia.org/wiki/Low-level_programming_language"

HYPERLINK "http://en.wikipedia.org/wiki/Low-

level_programming_language" HYPERLINK

"http://en.wikipedia.org/wiki/Low-level_programming_language"

HYPERLINK "http://en.wikipedia.org/wiki/Low-

level_programming_language" HYPERLINK

"http://en.wikipedia.org/wiki/Low-

http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/Word_%28data_type%29
http://en.wikipedia.org/wiki/Binary_number
http://en.wikipedia.org/wiki/Two%27s_complement
http://en.wikipedia.org/wiki/Two%27s_complement
http://en.wikipedia.org/wiki/Two%27s_complement
http://en.wikipedia.org/wiki/Two%27s_complement
http://en.wikipedia.org/wiki/Two%27s_complement
http://en.wikipedia.org/wiki/Two%27s_complement
http://en.wikipedia.org/wiki/Two%27s_complement
http://en.wikipedia.org/wiki/Two%27s_complement
http://en.wikipedia.org/wiki/Floating-point
http://en.wikipedia.org/wiki/Systems_programming
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language

level_programming_language"programming HYPERLINK

"http://en.wikipedia.org/wiki/Low-level_programming_language"

HYPERLINK "http://en.wikipedia.org/wiki/Low-

level_programming_language" HYPERLINK

"http://en.wikipedia.org/wiki/Low-level_programming_language"

HYPERLINK "http://en.wikipedia.org/wiki/Low-

level_programming_language" HYPERLINK

"http://en.wikipedia.org/wiki/Low-level_programming_language"

HYPERLINK "http://en.wikipedia.org/wiki/Low-

level_programming_language"languages, allowing fine-grained

control over hardware. The C programming language, for instance,

supplies integer types of various widths, such as short and long. If a

corresponding native type does not exist on the target platform, the

compiler will break them down into code using types that do exist.

For instance, if a 32-bit integer is requested on a 16 bit platform, the

compiler will tacitly treat it as an array of two 16 bit integers. Several

languages allow binary and hexadecimal literals, for convenient

manipulation of machine data.

In higher level programming, machine data types are often hidden or

abstracted as an implementation detail that would render code less

portable if exposed. For instance, a generic numeric type might be

supplied instead of integers of some specific bit-width.

Boolean type

The Boolean type represents the values true and false. Although only

two values are possible, they are rarely implemented as a single

binary digit for efficiency reasons. Many programming languages do

not have an explicit boolean type, instead interpreting (for instance) 0

as false and other values as true.

http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Binary_numeral_system
http://en.wikipedia.org/wiki/Hexadecimal
http://en.wikipedia.org/wiki/Literal_%28computer_science%29
http://en.wikipedia.org/wiki/Boolean_type
http://en.wikipedia.org/wiki/Logical_truth
http://en.wikipedia.org/wiki/False_%28logic%29

N

u

m

er

ic

ty

p

e

s

S

u

c

h

a

s:

 The integer HYPERLINK

"ht tp : / /en.wik ipedia .org/wik i / Integer_%28comput in

g%29" HYPERLINK

"ht tp : / /en.wik ipedia .org/wik i / Integer_%28comput in

g%29" HYPERLINK

"ht tp : / /en.wik ipedia .org/wik i / Integer_%28comput in

g%29" data types, or "whole numbers". May be subtyped

according to their ability to contain negative values (e.g.

unsigned in C and C++). May also have a small number of

predefined subtypes (such as short and long in C/C++); or

allow users to freely define subranges such as 1..12 (e.g.

Pascal/Ada).

 Floating point data types, sometimes misleadingly called

reals, contain fractional values. They usually have predefined

limits on both their maximum values and their precision.

These are often represented as decimal numbers.

http://en.wikipedia.org/wiki/Integer_%28computing%29
http://en.wikipedia.org/wiki/Integer_%28computing%29
http://en.wikipedia.org/wiki/Integer_%28computing%29
http://en.wikipedia.org/wiki/Integer_%28computing%29
http://en.wikipedia.org/wiki/Integer_%28computing%29
http://en.wikipedia.org/wiki/Integer_%28computing%29
http://en.wikipedia.org/wiki/Integer_%28computing%29
http://en.wikipedia.org/wiki/Pascal_%28programming_language%29
http://en.wikipedia.org/wiki/Ada_%28programming_language%29
http://en.wikipedia.org/wiki/Real_number

 Fixed point data types are convenient for representing

monetary values. They are often implemented internally as

integers, leading to predefined limits.

 Bignum or arbitrary precision numeric types lack predefined

limits. They are not primitive types, and are used sparingly for

efficiency reasons.

Composite / Derived data types

Composite types are derived from more than one primitive type.

This can be done in a number of ways. The ways they are

combined are called data

structures. Composing a primitive type into a compound type

generally results in a new type, e.g. array-of-integer is a different type

to integer.

 An array stores a number of elements of the same type in a

specific order. They are accessed using an integer to specify

which element is required (although the elements may be of

almost any type). Arrays may be fixed- length or expandable.

 Record (also called tuple or struct) Records are among the

simplest data structures. A record is a value that contains

other values, typically in fixed number and sequence and

typically indexed by names. The elements of records are

usually called fields or members.

 Union. A union type definition will specify which of a number of

permitted primitive types may be stored in its instances, e.g.

"float or long integer". Contrast with a record, which could be

defined to contain a float and an integer; whereas, in a union,

there is only one value at a time.

http://en.wikipedia.org/wiki/Fixed_point_%28computing%29
http://en.wikipedia.org/wiki/Array_data_type
http://en.wikipedia.org/wiki/Record_%28computer_science%29
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Union_%28computer_science%29
http://en.wikipedia.org/wiki/Record_%28computer_science%29

 A tagged union (also called a variant, variant record,

discriminated union, or disjoint union) contains an additional

field indicating its current type, for enhanced type safety.

 A set is an abstract HY PE R LI N K

" h t tp : / / en . w i k ip ed i a . o rg / w i k i / Ab s t r ac t _ da t a _ s t r u

c t u re " H Y PE R LI N K

" h t tp : / / en . w i k ip ed i a . o rg / w i k i / Ab s t r ac t _ da t a _ s t r u

c t u re " H Y PE R LI N K

" h t tp : / / en . w i k ip ed i a . o rg / w i k i / Ab s t r ac t _ da t a _ s t r u

c t u re " HYPERLINK

"http://en.wikipedia.org/wiki/Abstract_data_structure"

HYPERLINK

"http://en.wikipedia.org/wiki/Abstract_data_structure"

HYPERLINK

"http://en.wikipedia.org/wiki/Abstract_data_structure"data

H Y PE R LI N K

" h t tp : / / en . w i k ip ed i a . o rg / w i k i / Ab s t r ac t _ da t a _ s t r u

c t u re " H Y PE R LI N K

" h t tp : / / en . w i k ip ed i a . o rg / w i k i / Ab s t r ac t _ da t a _ s t r u

c t u re " H Y PE R LI N K

" h t tp : / / en . w i k ip ed i a . o rg / w i k i / Ab s t r ac t _ da t a _ s t r u

c t u re " HYPERLINK

"http://en.wikipedia.org/wiki/Abstract_data_structure"

HYPERLINK

"http://en.wikipedia.org/wiki/Abstract_data_structure"

HYPERLINK

"http://en.wikipedia.org/wiki/Abstract_data_structure"structure

that can store certain values, without any particular order,

and no repeated values. Values themselves are not retrieved

from sets, rather one tests a value for membership to obtain a

boolean "in" or "not in".

http://en.wikipedia.org/wiki/Tagged_union
http://en.wikipedia.org/wiki/Variant_type
http://en.wikipedia.org/wiki/Set_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Sequence

 An object contains a number of data fields, like a record, and

also a number of program code fragments for accessing or

modifying them. Data structures not containing code, like

those above, are called plain old data structure.

Many others are possible, but they tend to be further variations and

compounds of the above.

Enumerated Type

This has values which are different from each other, and which can

be compared and assigned, but which do not necessarily have any

particular concrete representation in the computer's memory;

compilers and interpreters can represent them arbitrarily. For

example, the four suits in a deck of playing cards may be four

enumerators named CLUB, DIAMOND, HEART, SPADE, belonging

to an enumerated type named suit. If a variable V is declared having

suit as its data type, one can assign any of those four values to it.

Some implementations allow programmers to assign integer values

to the enumeration values, or even treat them as type-equivalent to

integers.

String

and text

types

Such

as:

 Alphanumeric character. A letter of the alphabet, digit, blank

space, punctuation mark, etc.

 Alphanumeric strings, a sequence of characters. They are

typically used to represent words and text.

http://en.wikipedia.org/wiki/Object_%28computer_science%29
http://en.wikipedia.org/wiki/Plain_old_data_structure
http://en.wikipedia.org/wiki/Plain_old_data_structure
http://en.wikipedia.org/wiki/Alphanumeric
http://en.wikipedia.org/wiki/Character_%28computing%29
http://en.wikipedia.org/wiki/Alphabet
http://en.wikipedia.org/wiki/String_%28computer_science%29

Character and string types can store sequences of characters from a

character set such as ASCII. Since most character sets include the

digits, it is possible to have a numeric string, such as "1234".

However, many languages would still treat these as belonging to a

different type to the numeric value 1234.

Character and string types can have different subtypes according to

the required character "width". The original 7-bit wide ASCII was

found to be limited and superseded by 8 and 16-bit sets.

Abstract data types

Any type that does not specify an implementation is an abstract data

type. For instance, a stack (which is an abstract type) can be

implemented as an array (a contiguous block of memory containing

multiple values), or as a linked HYPERLINK

"http://en.wikipedia.org/wiki/Linked_list" HYPERLINK

"http://en.wikipedia.org/wiki/Linked_list" HYPERLINK

"http://en.wikipedia.org/wiki/Linked_list" HYPERLINK

"http://en.wikipedia.org/wiki/Linked_list" HYPERLINK

"http://en.wikipedia.org/wiki/Linked_list" HYPERLINK

"http://en.wikipedia.org/wiki/Linked_list"list HYPERLINK

"http://en.wikipedia.org/wiki/Linked_list" HYPERLINK

"http://en.wikipedia.org/wiki/Linked_list" HYPERLINK

"http://en.wikipedia.org/wiki/Linked_list" (a set

of non-contiguous memory blocks linked by pointers).

Abstract types can be handled by code that does not know or "care"

what underlying types are contained in them. Arrays and records can

also contain underlying types, but are considered concrete because

they specify how their contents or elements are laid out in memory.

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Numerical_digit
http://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Pointer_%28computer_science%29

Examples include:

 A queue is a first-in first-out list. Variations are Deque and Priority queue.

 A set can store certain values, without any particular order,

and with no repeated values.

 A stack is a last-in, first out.

 A tree HYPERLINK
"http://en.wikipedia.org/wiki/Tree_%28computer_science%29"
HYPERLINK
"http://en.wikipedia.org/wiki/Tree_%28computer_science%29"
HYPERLINK
"http://en.wikipedia.org/wiki/Tree_%28computer_science%29" is a
hierarchical structure.

 A graph.

 A hash or dictionary or map or Map/Associative

array/Dictionary is a more flexible variation on a record, in

which name-value pairs can be added and deleted freely.

 A smart pointer is the abstract counterpart to a pointer. Both

are kinds of reference

Utility data types

For convenience, high-level languages may supply ready-made "real

world" data types, for instance times, dates and monetary values and

memory, even where the language allows them to be built from

primitive types.

Other data types

Types can be based on, or derived from, the basic types explained

above. In some languages, such as C, functions have a type derived

from the type of their return value. The main non-composite, derived

type is the pointer, a data type whose value refers directly to (or

"points to") another value stored elsewhere in the computer memory

using its address. It is a primitive kind of reference. (In everyday

terms, a page number in a book could be considered a piece of

data that refers to another one). Pointers are often stored in a format

http://en.wikipedia.org/wiki/Queue_%28data_structure%29
http://en.wikipedia.org/wiki/Set_%28computer_science%29
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Tree_%28computer_science%29
http://en.wikipedia.org/wiki/Tree_%28computer_science%29
http://en.wikipedia.org/wiki/Tree_%28computer_science%29
http://en.wikipedia.org/wiki/Tree_%28computer_science%29
http://en.wikipedia.org/wiki/Tree_%28computer_science%29
http://en.wikipedia.org/wiki/Tree_%28computer_science%29
http://en.wikipedia.org/wiki/Name-value_pair
http://en.wikipedia.org/wiki/Reference_%28computer_science%29
http://en.wikipedia.org/wiki/Function_%28computer_science%29
http://en.wikipedia.org/wiki/Pointer_%28computer_programming%29
http://en.wikipedia.org/wiki/Computer_memory
http://en.wikipedia.org/wiki/Memory_address
http://en.wikipedia.org/wiki/Reference_%28computer_science%29

similar to an integer; however, attempting to dereference or "look

up" a pointer whose value

was never a valid memory address would cause a program to crash.

To ameliorate this potential problem, pointers are considered a

separate type to the type of data they point to, even if the underlying

representation is the same.

Data structure

In Computer Science, a data structure is a way of organizing

information, so that it is easier to use. Data structures determine the

way in which information can be stored in computer and used. If the

focus of use is on the things that can be done, people often talk

about an abstract data type (ADT). Data structures are often

optimized for certain operations. Finding the best data structure

when solving a problem is an important part of programming.

Programs that use the right data structure are easier to write, and

work better.

Basic data structures

Following are some common types of data structures frequently

used in computer programming.

Array

The simplest type of data structure is a linear array. This is also

called one- dimensional array. An array holds several values of the

same kind. Accessing the elements is very fast. It may not be

possible to add more values than defined at the start, without

copying all values into a new array. In computer science, an

array data structure or simply an array is a data structure consisting

of a collection of elements (values or variables), each identified by at

least one array index or key. An array is stored so that the position of

http://simple.wikipedia.org/wiki/Programming

each element can be computed from its index tuple by a

mathematical formula.[1 HYPERLINK

"http://simple.wikipedia.org/wiki/Data_structure#cite_note-1" HYPERLINK

"http://simple.wikipedia.org/wiki/Data_structure#cite_note-1" HYPERLINK

"http://simple.wikipedia.org/wiki/Data_structure#cite_note-1"][2]

For example, an array of 10 integer variables, with indices 0 through

9, may be stored as 10 words at memory addresses 2000, 2004,

2008, 2036, so that the element with index i has the address 2000 +

4 × i.

Because the mathematical concept of a matrix can be represented

as a two- dimensional grid, two-dimensional arrays are also

sometimes called matrices. In some cases the term "vector" is used

in computing to refer to an array,

although tuples rather than vectors are more correctly the

mathematical equivalent. Arrays are often used to implement tables,

especially look up tables; the word table is sometimes used as a

synonym of array.

Arrays are among the oldest and most important data structures, and

are used by almost every program. They are also used to implement

many other data structures, such as lists and strings. They effectively

exploit the addressing logic of computers. In most modern computers

and many external storage devices, the memory is a one-dimensional

array of words, whose indices are their addresses. Processors,

especially vector processors, are often optimized for array

operations.

Arrays are useful mostly because the element indices can be

computed at run time. Among other things, this feature allows a

single iterative statement to process arbitrarily many elements of an

array. For that reason, the elements of an array data structure are

required to have the same size and should use the same data

http://simple.wikipedia.org/wiki/Data_structure#cite_note-1
http://simple.wikipedia.org/wiki/Data_structure#cite_note-1
http://simple.wikipedia.org/wiki/Data_structure#cite_note-1
http://simple.wikipedia.org/wiki/Data_structure#cite_note-1

representation. The set of valid index tuples and the addresses of the

elements (and hence the element addressing formula) are usually,

but not always, fixed while the array is in use.[3 HYPERLINK

"http://simple.wikipedia.org/wiki/Data_structure#cite_note-3" HYPERLINK

"http://simple.wikipedia.org/wiki/Data_structure#cite_note-3" HYPERLINK

"http://simple.wikipedia.org/wiki/Data_structure#cite_note-3"][4]

The term array is often used to mean array data type, a kind

of data type provided by most high-level programming languages that

consists of a collection of values or variables that can be selected by

one or more indices computed at run-time. Array types are often

implemented by array structures; however, in some languages they

may be implemented by hash tables, linked lists, search trees, or

other data structures.

Linked List

A linked list data structure is a set of records linked together by

references. The records are often called nodes. The references are

often called links or pointers. From here on, the words node and

pointer will be used for these concepts.

Each node points to another node.

In linked data structures, pointers are only dereference or compared

for equality. Thus, linked data structures are different than arrays,

which require adding and subtracting pointers.

Linked lists, search trees, and expression trees are all linked data

structures. They are also important in algorithms such as topological

sort and set union-find. Stack

A stack is a basic data structure that can be logically thought as

linear structure represented by a real physical stack or pile, a

https://simple.wikipedia.org/wiki/Tuple
http://simple.wikipedia.org/wiki/Data_structure#cite_note-3
http://simple.wikipedia.org/wiki/Data_structure#cite_note-3
http://simple.wikipedia.org/wiki/Data_structure#cite_note-3
http://simple.wikipedia.org/wiki/Data_structure#cite_note-3

structure where insertion and deletion of items takes place at one

end called top of the stack. The basic concept can be illustrated by

thinking of your data set as a stack of plates or books where you can

only take the top item off the stack in order to remove things from it.

This structure is used all throughout programming.

The basic implementation of a stack is also called a ―Last In First

Out‖ structure; however there are different variations of stack

implementations.

There are basically three operations that can be performed on stacks. They are:

 inserting (―pushing‖) an item into a stack

 deleting (―popping‖) an item from the stack

 displaying the contents of the top item of the stack (―peeking‖)

Queue

A queue is an abstract data type or a linear data structure, in which

the first element is inserted from one end (the ―tail‖), and the deletion

of existing element takes place from the other end (the ―head‖). A

queue is a ―First In First Out‖ structure. The process of adding an

element to a queue is called ―enqueuing‖ and the process of

removing an element from a queue is called ―dequeuing‖.

Graph

A graph is an abstract data type that is meant to

implement the graph and hypergraph concepts from mathematics. A

graph data structure consists of a finte (and possibly

mutable) set of ordered pairs, called edges or arcs, of certain

entities called nodes or vertices. As in

mathematics, an edge (x,y) is said to point or go from x to y. The

nodes may be part of the graph structure, or may be external entities

represented by integer indices or references. A graph data structure

may also associate to each edge some edge value, such as a

symbolic label or a numeric attribute.

Tree

The tree is one of the most powerful of the advanced data structures

and it often appears in advanced subjects such as AI and design.

Whenever a tree is used there is a high chance that an index is

involved somewhere. The simplest type of index is a sorted listing of

the key field. This provides a fast lookup because you can use a

binary search to locate any item without having to look at each one in

turn.

The trouble with a simple ordered list only becomes apparent once

you start adding new items and have to keep the list sorted - it can be

done reasonably efficiently but it takes some juggling. Additionally, a

linear index isn't easy to share because the whole index needs to be

―locked‖ when one user edits it, whereas one ―branch‖ of a tree can

be locked, leaving the other branches editable by other users (as

they cannot be affected).

Abstract data type

In computer science, an abstract data type (ADT) is a mathematical

model for a certain class of data structures that have similar

behavior; or for certain data types of one or more programming

languages that have similar semantics. An abstract data type is

defined indirectly, only by the operations that may be performed on it

and by mathematical constraints on the effects (and possibly cost) of

those operations.

For example, an abstract stack HYPERLINK
"http://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29" HYPERLINK
"http://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29" HYPERLINK
"http://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29" could be defined
by three operations:

• push, that inserts some data item onto the structure,

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Semantics
http://en.wikipedia.org/wiki/Computational_complexity
http://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29

• pop, that extracts an item from it (with the constraint that each

pop always returns the most recently pushed item that has not

been popped yet), and

• peek, that allows data on top of the structure to be examined without

removal.

When analyzing HYPERLINK

"http://en.wikipedia.org/wiki/Analysis_of_algorithms" HYPERLINK

"http://en.wikipedia.org/wiki/Analysis_of_algorithms" HYPERLINK

"http://en.wikipedia.org/wiki/Analysis_of_algorithms" HYPERLINK

"http://en.wikipedia.org/wiki/Analysis_of_algorithms" HYPERLINK

"http://en.wikipedia.org/wiki/Analysis_of_algorithms" HYPERLINK

"http://en.wikipedia.org/wiki/Analysis_of_algorithms"the HYPERLINK

"http://en.wikipedia.org/wiki/Analysis_of_algorithms" HYPERLINK

"http://en.wikipedia.org/wiki/Analysis_of_algorithms" HYPERLINK

"http://en.wikipedia.org/wiki/Analysis_of_algorithms" HYPERLINK

"http://en.wikipedia.org/wiki/Analysis_of_algorithms" HYPERLINK

"http://en.wikipedia.org/wiki/Analysis_of_algorithms" HYPERLINK

"http://en.wikipedia.org/wiki/Analysis_of_algorithms"efficiency of

algorithms that use stacks, one may also specify that all operations

take the same time no matter how many items have been pushed

into the stack, and that the stack uses a constant amount of storage

for each element.

Abstract data types are purely theoretical entities, used (among other

things) to simplify the description of abstract algorithms, to classify

and evaluate data structures, and to formally describe the type

systems of programming languages. However, an ADT may be

implemented by specific data types or data structures, in many ways

and in many programming languages; or described in a formal

specification language. ADTs are often implemented as modules: the

module's interface declares procedures that correspond to the ADT

http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Type_system
http://en.wikipedia.org/wiki/Type_system
http://en.wikipedia.org/wiki/Implementation
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Formal_specification_language
http://en.wikipedia.org/wiki/Formal_specification_language
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Interface_%28computer_science%29

operations, sometimes with comments that describe the constraints.

This information hiding strategy allows the implementation of the

module to be changed without disturbing the client HYPERLINK

"http://en.wikipedia.org/wiki/Client_%28computing%29"

HYPERLINK

"http://en.wikipedia.org/wiki/Client_%28computing%29"

HYPERLINK

"http://en.wikipedia.org/wiki/Client_%28computing%29" programs.

The term abstract data type can also be regarded as a generalised

approach of a number of algebraic structures, such as lattices,

groups, and rings.[2] HYPERLINK

"http://en.wikipedia.org/wiki/Abstract_data_type#cite_note-2"

HYPERLINK

"http://en.wikipedia.org/wiki/Abstract_data_type#cite_note-2"

HYPERLINK

"http://en.wikipedia.org/wiki/Abstract_data_type#cite_note-2" This

can be treated as part of the subject area of artificial intelligence. The

notion of abstract data types is related to the concept of data

abstraction, important in object- oriented HYPERLINK

"http://en.wikipedia.org/wiki/Object-

oriented_programming_language" HYPERLINK

"http://en.wikipedia.org/wiki/Object-

oriented_programming_language" HYPERLINK

"http://en.wikipedia.org/wiki/Object-

oriented_programming_language" HYPERLINK

"http://en.wikipedia.org/wiki/Object-

oriented_programming_language" HYPERLINK

"http://en.wikipedia.org/wiki/Object-

oriented_programming_language" HYPERLINK

"http://en.wikipedia.org/wiki/Object-

oriented_programming_language"programming and design

http://en.wikipedia.org/wiki/Comment_%28computer_programming%29
http://en.wikipedia.org/wiki/Information_hiding
http://en.wikipedia.org/wiki/Client_%28computing%29
http://en.wikipedia.org/wiki/Client_%28computing%29
http://en.wikipedia.org/wiki/Client_%28computing%29
http://en.wikipedia.org/wiki/Client_%28computing%29
http://en.wikipedia.org/wiki/Client_%28computing%29
http://en.wikipedia.org/wiki/Client_%28computing%29
http://en.wikipedia.org/wiki/Abstract_data_type#cite_note-2
http://en.wikipedia.org/wiki/Abstract_data_type#cite_note-2
http://en.wikipedia.org/wiki/Abstract_data_type#cite_note-2
http://en.wikipedia.org/wiki/Abstract_data_type#cite_note-2
http://en.wikipedia.org/wiki/Abstract_data_type#cite_note-2
http://en.wikipedia.org/wiki/Abstract_data_type#cite_note-2
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Data_abstraction
http://en.wikipedia.org/wiki/Data_abstraction
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Design_by_contract

HYPERLINK "http://en.wikipedia.org/wiki/Design_by_contract"

HYPERLINK "http://en.wikipedia.org/wiki/Design_by_contract"

HYPERLINK "http://en.wikipedia.org/wiki/Design_by_contract"

HYPERLINK "http://en.wikipedia.org/wiki/Design_by_contract"

HYPERLINK "http://en.wikipedia.org/wiki/Design_by_contract"

HYPERLINK "http://en.wikipedia.org/wiki/Design_by_contract"by

HYPERLINK "http://en.wikipedia.org/wiki/Design_by_contract"

HYPERLINK "http://en.wikipedia.org/wiki/Design_by_contract"

HYPERLINK "http://en.wikipedia.org/wiki/Design_by_contract"

HYPERLINK "http://en.wikipedia.org/wiki/Design_by_contract"

HYPERLINK "http://en.wikipedia.org/wiki/Design_by_contract"

HYPERLINK

"http://en.wikipedia.org/wiki/Design_by_contract"contract

methodologies for software development.

Definition of abstract data type (ADT)

An abstract data type is defined as a mathematical model of the data

objects that make up a data type as well as the functions that operate

on these objects. There are no standard conventions for defining

them. A broad division may be drawn between "imperative" and

"functional" definition styles.

Abstract Data Type in Computer Programming

In the course an abstract data type refers to a generalized data

structure that accepts data objects stored as a list with specific

behaviors defined by the

methods associated with the underlying nature of the list.

This is a very important BIG idea in computer science. It is based on

the recognitation that often a group of data is simply a list in random

or some specific order. A list of numbers can be either integer or real

but as in arithmetic the numbers can represent any numeric quantity

http://en.wikipedia.org/wiki/Design_by_contract
http://en.wikipedia.org/wiki/Design_by_contract
http://en.wikipedia.org/wiki/Design_by_contract
http://en.wikipedia.org/wiki/Design_by_contract
http://en.wikipedia.org/wiki/Design_by_contract
http://en.wikipedia.org/wiki/Design_by_contract
http://en.wikipedia.org/wiki/Design_by_contract
http://en.wikipedia.org/wiki/Design_by_contract
http://en.wikipedia.org/wiki/Design_by_contract
http://en.wikipedia.org/wiki/Design_by_contract
http://en.wikipedia.org/wiki/Design_by_contract
http://en.wikipedia.org/wiki/Design_by_contract
http://en.wikipedia.org/wiki/Design_by_contract
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_engineering

e.g. weight of a list of students in a classroom, in which case we

would have a list of real numbers. Mathematical operations e.g.

average, min, max are performed exactly the same way on any list

of real numbers irrespective of the specific concrete nature of the list.

For example: a group of people queuing at the canteen can be

represented as a list with certain characteristics or behaviors. People

arrive and attach to the end of the queue, people get served and

leave the queue from the head or start of the queue. Any simple

queue can be described in exactly the same way. The same basic

operations: add, remove, insert are always the same, it does not

matter that the data object represent a person or something else.

Adding the object to end of the queue is exactly the same operation

for any set of data described as a queue.

An ADT has a generalized name e.g. Stack, Queue, Binary Tree etc.

Each ADT accepts data objects that are represented as members of

the underlying list e.g. an integer, a Person Object. Each ADT has a

set of pre-defined methods (behaviors in OOPs terminology) that can

be used to manipulate the members in the list - irrespective of what

they actually in reality represent.

Some common ADTs, which have proved useful in a great variety of

programming applications, are –

 Container

 Deque

 List

 Map

 Multimap

 Multiset

 Priority HYPERLINK "http://en.wikipedia.org/wiki/Priority_queue"
HYPERLINK "http://en.wikipedia.org/wiki/Priority_queue" HYPERLINK

http://en.wikipedia.org/wiki/Container_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Deque
http://en.wikipedia.org/wiki/List_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Multimap
http://en.wikipedia.org/wiki/Set_%28abstract_data_type%29#Multiset
http://en.wikipedia.org/wiki/Priority_queue
http://en.wikipedia.org/wiki/Priority_queue

"http://en.wikipedia.org/wiki/Priority_queue" HYPERLINK
"http://en.wikipedia.org/wiki/Priority_queue" HYPERLINK
"http://en.wikipedia.org/wiki/Priority_queue" HYPERLINK
"http://en.wikipedia.org/wiki/Priority_queue"queue

 Queue

 Set

 Stack

 Tree

 Graph

Each of these ADTs may be defined in many ways and variants, not

necessarily equivalent. For example, a stack ADT may or may not

have a count operation that tells how many items have been pushed

and not yet popped. This choice makes a difference not only for its

clients but also for the implementation.

Implementation

Implementing an ADT means providing one procedure or function for

each abstract operation. The ADT instances are represented by

some concrete data structure that is manipulated by those

procedures, according to the ADT's specifications.

Usually there are many ways to implement the same ADT, using

several different concrete data structures. Thus, for example, an

abstract stack can be implemented by a linked HYPERLINK

"http://en.wikipedia.org/wiki/Linked_list" HYPERLINK

"http://en.wikipedia.org/wiki/Linked_list" HYPERLINK

"http://en.wikipedia.org/wiki/Linked_list" HYPERLINK

"http://en.wikipedia.org/wiki/Linked_list" HYPERLINK

"http://en.wikipedia.org/wiki/Linked_list" HYPERLINK

"http://en.wikipedia.org/wiki/Linked_list"list HYPERLINK

"http://en.wikipedia.org/wiki/Linked_list" HYPERLINK

"http://en.wikipedia.org/wiki/Linked_list" HYPERLINK

"http://en.wikipedia.org/wiki/Linked_list" or by an array.

http://en.wikipedia.org/wiki/Priority_queue
http://en.wikipedia.org/wiki/Priority_queue
http://en.wikipedia.org/wiki/Priority_queue
http://en.wikipedia.org/wiki/Priority_queue
http://en.wikipedia.org/wiki/Queue_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Set_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Tree_%28computer_science%29
http://en.wikipedia.org/wiki/Graph_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Array_data_structure

An ADT implementation is often packaged as one or more modules,

whose interface contains only the signature (number and types of the

parameters and results) of the operations. The implementation of the

module — namely, the bodies of the procedures and the concrete

data structure used — can then be hidden from most clients of the

module. This makes it possible to change the implementation without

affecting the clients.

Algorithm

In mathematics and computer science, an algorithm is a step-by-step

procedure for calculations. Algorithms are used for calculation, data

HYPERLINK "http://en.wikipedia.org/wiki/Data_processing"

HYPERLINK "http://en.wikipedia.org/wiki/Data_processing"

HYPERLINK "http://en.wikipedia.org/wiki/Data_processing"

HYPERLINK "http://en.wikipedia.org/wiki/Data_processing"

HYPERLINK "http://en.wikipedia.org/wiki/Data_processing"

HYPERLINK

"http://en.wikipedia.org/wiki/Data_processing"processing, and

automated reasoning.

An algorithm is an effective method expressed as a finite list of well-defined

instructions for calculating a function. Starting from an initial state

and initial input (perhaps empty), the instructions describe a

computation that, when executed, proceeds through a finite number

of well-defined successive states, eventually producing "output" and

terminating at a final ending state. The transition from one state to the

next is not necessarily deterministic; some algorithms, known as

randomized HYPERLINK

"http://en.wikipedia.org/wiki/Randomized_algorithms" HYPERLINK

"http://en.wikipedia.org/wiki/Randomized_algorithms" HYPERLINK

"http://en.wikipedia.org/wiki/Randomized_algorithms" HYPERLINK

"http://en.wikipedia.org/wiki/Randomized_algorithms" HYPERLINK

http://en.wikipedia.org/wiki/Module_%28programming%29
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Calculation
http://en.wikipedia.org/wiki/Data_processing
http://en.wikipedia.org/wiki/Data_processing
http://en.wikipedia.org/wiki/Data_processing
http://en.wikipedia.org/wiki/Data_processing
http://en.wikipedia.org/wiki/Data_processing
http://en.wikipedia.org/wiki/Data_processing
http://en.wikipedia.org/wiki/Data_processing
http://en.wikipedia.org/wiki/Data_processing
http://en.wikipedia.org/wiki/Automated_reasoning
http://en.wiktionary.org/wiki/finite
http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Null_string
http://en.wikipedia.org/wiki/Computation
http://en.wikipedia.org/wiki/Execution_%28computing%29
http://en.wikipedia.org/wiki/Deterministic
http://en.wikipedia.org/wiki/Randomized_algorithms
http://en.wikipedia.org/wiki/Randomized_algorithms
http://en.wikipedia.org/wiki/Randomized_algorithms
http://en.wikipedia.org/wiki/Randomized_algorithms
http://en.wikipedia.org/wiki/Randomized_algorithms

"http://en.wikipedia.org/wiki/Randomized_algorithms" HYPERLINK

"http://en.wikipedia.org/wiki/Randomized_algorithms"algorithms,

incorporate random input.

Complexity of Algorithm and Time, space tradeoff

In computer science, the algorithms are evaluated by the

determination of the amount of resources (such as time and storage)

necessary to execute them. Most algorithms are designed to work

with inputs of arbitrary length. Usually, the efficiency or running time

of an algorithm is stated as a function relating the input length to the

number of steps (time complexity) or storage locations (space

complexity).

Algorithm analysis is an important part of a broader computational

complexity theory, which provides theoretical estimates for the

resources needed by any algorithm which solves a given

computational problem. These estimates provide an insight into

reasonable directions of search for efficient algorithms.

In theoretical analysis of algorithms it is common to estimate their

complexity in the asymptotic sense, i.e., to estimate the complexity

function for arbitrarily large input. Big O notation, Big-omega notation

and Big-theta notation are used to this end. For instance, binary

search is said to run in a number of steps proportional to the

logarithm of the length of the list being searched, or in O(log(n)),

colloquially "in logarithmic time". Usually asymptotic estimates are

used because different implementations of the same algorithm may

differ in efficiency. However the efficiencies of any two "reasonable"

implementations of a given algorithm are related by a constant

multiplicative factor called a hidden constant.

Exact (not asymptotic) measures of efficiency can sometimes be

computed but they usually require certain assumptions concerning

the particular implementation of the algorithm, called model of

http://en.wikipedia.org/wiki/Randomized_algorithms
http://en.wikipedia.org/wiki/Randomized_algorithms

computation. A model of computation may be defined in terms of an

abstract computer, e.g., Turing

machine, and/or by postulating that certain operations are executed

in unit time. For example, if the sorted list to which we apply binary

search has n elements, and we can guarantee that each lookup of an

element in the list can be done in unit time, then at most log2 n + 1

time units are needed to return an answer.

Best, worst and average case complexity

The best, worst and average case complexity refer to three different

ways of measuring the time complexity (or any other complexity

measure) of different inputs of the same size. Since some inputs of

size n may be faster to solve than others, we define the following

complexities:

 Best-case complexity: This is the complexity of solving the

problem for the best input of size n.

 Worst-case complexity: This is the complexity of solving the

problem for the worst input of size n.

 Average-case complexity: This is the complexity of solving the

problem on an average. This complexity is only defined with

respect to a probability distribution over the inputs. For

instance, if all inputs of the same size are assumed to be

equally likely to appear, the average case complexity can be

defined with respect to the uniform distribution over all inputs

of size n.

Time complexity

In computer science, the time complexity of an algorithm quantifies

the amount of time taken by an algorithm to run as a function of the

length of the string representing the input. The time complexity of an

algorithm is commonly expressed using big O notation, which

excludes coefficients and lower order terms. When expressed this

way, the time complexity is said to be described asymptotically, i.e.,

as the input size goes to infinity. For example, if the time required by

an algorithm on all inputs of size n is at most 5n3 + 3n, the asymptotic

time complexity is O(n3).

Time complexity is commonly estimated by counting the number of

elementary operations performed by the algorithm, where an

elementary operation takes a

fixed amount of time to perform. Thus the amount of time taken and

the number of elementary operations performed by the algorithm

differ by at most a constant factor.

Since an algorithm's performance time may vary with different inputs

of the same size, one commonly uses the worst-case time

complexity of an algorithm, denoted as T(n), which is defined as the

maximum amount of time taken on any input of size n. Time

complexities are classified by the nature of the function T(n). For

instance, an algorithm with T(n) = O(n) is called a linear time

algorithm, and an algorithm with T(n) = O(2n) is said to be an

exponential time algorithm.

space complexity

The way in which the amount of storage space required by an

algorithm varies with the size of the problem it is solving. Space

complexity is normally expressed as an order of magnitude, e.g.

O(N^2) means that if the size of the problem (N) doubles then four

times as much working storage will be needed.

String

STRING PROCESSING

A finite sequence ‗S‘ of zero or more characters is called a String.

The string with zero character is called the empty string or null string.

➔ The number of characters in a string is called its length.

➔ Specific string will be denoted by in closing their character in

single quotation mark.

For e.g. ; ―THE END‖ quotation mark.

‗123‘

‗THE‘ ||‘ ‗|| ‗END‘ THE END

Let S1 ; S2 be the string consist of the character of S1 followed by the

characters of S2 is called the concatenation

of S1 & S2 . It will be denoted by S1 , S2 .

For e.g., S1 = ‗XY1‘

S2 = ‗PQR‘

S1 || S2 = XY1 PQR

S1 = ‗XY1‘, S2 = ‗ ‗(space), S3 = ‗PQR‘

S1 || S2 = XY1 (space) PQR

The length of S1 || S2 || S3 is equal to the sum of length string S1 &

S2 & S3 . A string Y is called a substring of a string ‗S‘ & if their exits

string ‗S‘ & if their exits string X & Z. Such that S=X || Y || Z. If X is

an empty string, then y is called &

initial substring of ‗S‘ & Z is an empty string then ‗Y‘ is called a

terminal substring of ‗S‘.

CHARACTER DATA TYPE:-

➔ The character data type is of two data type. (1) Constant (2) Variable

Constant String:

-> The constant string is fixed & is written in either ‗ ‘ single quote

& ― ‖ double quotation.

Ex:- ‗SONA‘

―Sona‖

Variable String:

String variable falls into 3 categories.

• Static

• Semi-Static

• Dynamic

Static character variable:

Whose variable is defined before the program can be executed & cannot change

throughout the program.

Semi-static variable:

Whose length variable may as long as the length does not exist, a

maximum value. A maximum value determine by the program before

the program is executed.

Dynamic variable:

A variable whose length can change during the execution of the program.

String Operation:

There are four different operations.

• Sub string

• Indexing

• Concatenation

• Length

Sub string:-

Group of conjunctive elements in a string (such as wards, purchases

or sentences) called substring.

Accessing substring of a given string required 3 pieces of information.

• The name of the string or the string itself.

• The position of the first character of the substring in the given string.

• The length of the substring of the last character of the

substring. We called this operation SUBSTRING.

SUBSTRING (String, initial, length)

To denote the substring of string ‗S‘ beginning in the position ‗K‘ having a length

‗L‘.

SUBSTRING (S, K, L) T K L For e.g.; SUBSTRING (‗TO BE OR NOT TO BE‘, 4, 7) SUBSTRING=BE OR N

SUBSTRING

(THE END, 4, 4)

SUBSTRING=

END.

INDEXING:-

Indexing also called pattern matching which refers to finding the

position where a string pattern ‗P‘. First appears in a given string text

‗T‘, we called this operation index and write as INDEX (text, pattern)

If the pattern ‗P‘ does not appear in text ‗T‘ then index is

assign the value 0; the argument & text and pattern can either string

constant or string variable.

For e.g.; T contains the text.

‗HIS FATHER IS THE

PROFESSOR‘ Then INDEX

(T, ‗THE‘)

7

INDEX (T, ‗THEN‘)

0

T,

INDEX (‗ THE‘)

10

Concatenation:-

Let S1 & S2 in be the string then concatenation of S1 & S2

is denoted by S1 S2 , S1 || S2 , each the string consist of the

character of S1 followed by the characters of S2 .

Ex:- S1 = ‗Sonalisa‘ S2 = ‗ ‘ S3 = ‗Behera‘

S1 || S2 || S3 = Sonalisa Behera

Length operation:-

The number of character in a string is called its length. We will write

LENGTH (string).For the length of a given string LENGTH

(―Computer‖). The length is 8.

Basic language LEN (STRING)

Strlen (string)

Strupper

(string)

String

upper

Strupr(‗

comput

er‘)

COMPUTER

String lower

Strlwr (‗COMPUTER‘)

COMPUTER

String

concatenating Strcnt String Reverse Strrev

Linear Array:

ARRAY

A Linear Array is a list of finite number of n homogeneous data

elements i.e. the elements of same data types Such that:

• The elements of the array are referenced respectively by an index

set consisting of n consecutive numbers.

• The elements of the array are stored respectively in the

successive memory locations.

The number n of elements is called length or size of array. If not

explicitly stated, we will assume the index set consists of integers

1, 2, 3 …n. In general the length or the number of data elements of

the array can be obtained from the index set by the formula

Length= UB – LB + 1

Where UB is the largest index, called the upper bound, and LB is

the smallest index, called the lower bound. Note that length = UB

when LB = 1.

The elements of an array A are denoted by subscript notation à

a1, a2, a3…an Or by the parenthesis notation -> A (1), A (2),…., A(n)

Or by the bracket notation -> A[1], A[2],….,A[n].

We will usually use the subscript notation or the bracket notation.

Representation of Linear Arrays in memory:

Let LA is a linear array in the memory of the computer. Recall that

the memory of computer is simply a sequence of addressed

locations.

LOC (LA[k]) = address of element LA[k] of the array LA.

As previously noted, the elements of LA are stored in the successive

memory cells. Accordingly, the computer does not need to keep track

of the address of every element of LA, but needs to keep track only

of the address of the first element of LA, denoted by

Base (LA)

And called the base address of LA. Using base address the

computer calculates the address of any element of LA by the

following formula:

LOC (LA[k]) = Base (LA) + w (k-lower bound)

Where w is the number of words per memory cell for the array LA.

OPERATIONS ON ARRAYS

Various operations that can be performed on an array

• Traversing

• Insertion

• Deletion

• Sorting

• Searching

• Merging

Traversing Linear Array:

Let A be a collection of data elements stored in the memory of the

computer. Suppose we want to print the content of each element of

A or suppose we want to count the number of elements of A, this can

be accomplished by traversing A, that is, by accessing and

processing each element of a exactly ones.

The following algorithm traverses a linear array LA. The simplicity of

the algorithm comes from the fact that LA is a linear structure. Other

linear structures, such as linked list, can also be easily traversed. On

the other hand, traversal of nonlinear structures, such as trees and

graph, is considerably more complicated.

Algorithm: (Traversing a Linear Array)

Here LA is a linear array with lower bound LB and upper bound UB.

This algorithm traverses LA applying an operation PROCESS to each

element of LA.

• [Initialize counter] Set k: =LB.

• Repeat steps 3 and 4 while k <=UB.

• [Visit Element] Apply PROCESS to LA [k].

• [Increase Counter]

Set k: =k + 1. [End of

step 2 loop]

• Exit.

OR

We also state an alternative form of the algorithm which uses a

repeat-for loop instead of the repeat-while loop.

Algorithm: (Traversing a Linear Array)

Here LA is a linear array with lower bound LB and upper bound UB.

This algorithm traverses LA applying an operation PROCESS to

each element of LA.

• Repeat for k = LB to UB:

Apply

PROCESS to

LA [k]. [End of

loop]

• Exit.

Caution: The operation PROCESS in the traversal algorithm may

use certain variables which must be initialized before PROCESS is

applied to any of the elements in the array. Accordingly, the algorithm

may need to be proceeded by such an initialization step.

Insertion and Deletion in Linear Array:

Let A be a collection of data elements in the memory of the

computer. ―Inserting‖ refers to the operation of adding another

element to the collection A, and

―deleting‖ refers to the operation of removing one element from A.

Inserting an element at the end of the linear array can be easily

done provided the memory space allocated for the array is large

enough to accommodate the additional element. On the other hand,

suppose we need to insert an element in

the middle of the array. Then, on the average, half of the elements

must be moved downward to new location to accommodate the new

elements and keep the order of the other elements.

Similarly, deleting an element at the end of the array presents no

difficulties, but deleting the element somewhere in the middle of the

array requires that each subsequent element be moved one location

upward in order to fill up the array.

The following algorithm inserts a data element ITEM in to the Kth

position in the linear array LA with N elements.

Algorithm for Insertion: (Inserting into

Linear Array) INSERT (LA, N, K, ITEM)

Here LA is a linear array with N elements and K is a positive integer

such that K<=N. The algorithm inserts an element ITEM into the Kth

position in LA.

• [Initialize counter] Set J: = N.

• Repeat Steps 3 and 4 while j >= k;

• [Move jth element downward.] Set LA [J + 1]: =LA [J].

• [Decrease

counter] Set J: = J-1

[End of step 2 loop]

• [Insert element] Set LA [K]:=ITEM.

• [Reset N] Set N:=N+1

• EXIT.

The following algorithm deletes the Kth element from a linear array

LA and assigns it to a variable ITEM.

Algorithm for Deletion: (Deletion from a Linear Array)

DELETE (LA, N, K, ITEM)

Here LA is a Linear Array with N elements and K is the positive

integer such that K<=N. This algorithm deletes the Kth element from

LA.

• Set ITEM: = LA [k].

• Repeat for J = K to N – 1.

[Move J + 1st element upward] Set LA [J]:

= LA [J +1]. [End of loop]

• [Reset the number N of elements in LA] Set N: = N-1

• EXIT

Multidimensional Array

• Array having more than one subscript variable is

 called Multi- Dimensional array.

• Multi Dimensional Array is also called as Matrix.

Consider the Two dimensional array -

• Two Dimensional Array requires Two Subscript Variables

• Two Dimensional Array stores the values in the form of matrix.

• One Subscript Variable denotes the ―Row‖ of a matrix.

• Another Subscript Variable denotes the ―Column‖ of a matrix.

Declaration and Use of Two Dimensional Array :

int a[3][4];

Use

:

for(i

=0;i<

row;i

++)

for(j=0;j<col;j++)

{

printf("%d",a[i][j]);

}

Meaning of Two Dimensional Array :

• Matrix is having 3 rows (i takes value from 0 to 2)

• Matrix is having 4 Columns (j takes value from 0 to 3)

• Above Matrix 3×4 matrix will have 12 blocks having 3 rows & 4 columns.

• Name of 2-D array is ‗a‗ and each block is identified by the row &
column

number.

• Row number and Column Number Starts from 0.

Cell Location Meaning

a[0][0] 0th Row and 0th Column

a[0][1] 0th Row and 1st Column

a[0][2] 0th Row and 2nd Column

a[0][3] 0th Row and 3rd Column

a[1][0] 1st Row and 0th Column

a[1][1] 1st Row and 1st Column

a[1][2] 1st Row and 2nd Column

a[1][3] 1st Row and 3rd Column

a[2][0] 2nd Row and 0th Column

a[2][1] 2nd Row and 1st Column

a[2][2] 2nd Row and 2nd Column

a[2][3] 2nd Row and 3rd Column

Summary Point Explanation

No of Subscript Variables Required 2

Declaration a[3][4]

No of Rows 3

No of Columns 4

No of Cells 12

No of for loops required to iterate 2

Two-Dimensional Array : Summary with Sample Example

Memory Representation

• 2-D arrays are Stored in contiguous memory location row wise.

• 3 X 3 Array is shown below in the first Diagram.

• Consider 3×3 Array is stored in Contiguous memory

location which starts from 4000 .

• Array element a[0][0] will be stored at address 4000 again

a[0][1] will be stored to next memory location i.e Elements

stored row-wise

• After Elements of First Row are stored in appropriate

memory location , elements of next row get their

corresponding mem. locations.

• This is integer array so each element requires 2 bytes of memory.

Array Representation:

• Column-major

• Row-major

Arrays may be represented in Row-major form or Column-major

form. In Row- major form, all the elements of the first row are printed,

then the elements of the second row and so on up to the last row. In

Column-major form, all the elements of the first column are printed,

then the elements of the second column and so on up to the last

column. The ‗C‘ program to input an array of order m x n and print

the array contents in row major and column major is given below.

The following array elements may be entered during run time to test

this program:

Output:

Row Major:

1 2 3

4 5 6

7 8 9

Column Major:

1 4 7

2 5 8

3 6 9

Basic Memory Address Calculation :

a[0][1] = a[0][0] + Size of Data Type

Element Memory Location

a[0][0] 4000

a[0][1] 4002

a[0][2] 4004

a[1][0] 4006

a[1][1] 4008

a[1][2] 4010

a[2][0] 4012

a[2][1] 4014

a[2][2] 4016

Array and Row Major, Column Major order arrangement of 2 d array

An array is a list of a finite number of homogeneous data elements.

The number of elements in an array is called the array length. Array

length can be obtained from the index set by the formula

Length=UB-LB+1

Where UB is the largest index , called the upper bound and LB is the

smallest index , called the lower bound. Suppose int Arr[10] is an

integer array. Upper bound of this array is 9 and lower bound of this

array is 0 ,so the length is 9- 0+1=10.

In an array ,the elements are stored successive memory cells.

Computer does not need to keep track of the address of every

elements in memory. It will keep the address of the first location only

and that is known as base address of an array. Using the base

address , address of any other location of an array can be calculated

by the computer. Suppose Arr is an array whose base address is

Base(Arr) and w is the number of memory cells required by each

elements of the array Arr.The address of Arr[k] – k being the index

value can be obtained by

using the formula :

Address(Arr[k])=Base(Arr)+w(k-LowerBound)

• d Array :- Suppose Arr is a 2 d array. The first dimension of Arr

contains the index set 0,1,2, … row-1 (the lower bound is 0 and the

upper bound is row-1) and the second dimension contains the index

set 0,1,2,… col-1(with lower bound 0 and upper bound col-1.)

The length of each dimension is to be calculated .The multiplied

result of both the lengths will give you the number of

elements in the array.

Let‘s assume Arr is an two dimensional 2 X 2 array .The array may

be stored in memory one of the

 following way :-

• Column by column i,e column major order

• Row by row , i,e in row major order. The following figure shows

both representation of the above array.

By row-major order, we mean that the elements in the array are

so arranged that the subscript at the extreme right varies fast than the

subscript at it‘s left., while in column-major order , the subscript at

the extreme left changes rapidly ,

then the subscript at it‘s right and so on.

1,1

2,1

1,2

2,2

Colum

nMajor

Order

1,1

1,2

2,1

2,2

Row major order

Now we know that computer keeps track of only the base address.

So the address of any specified location of an array , for example

Arr[j,k] of a 2 d array Arr[m,n] can be calculated by using the

following formula :- (Column major order)

Address(Arr[j,k])= base(Arr)+w[m(k-1)+(j-1)] (Row major order)

 Address(Arr[j,k])=base(Arr)+w[n(j-1)+(k-1)] For example

Arr(25,4) is an array with base value 200.w=4 for this array. The

address of Arr(12,3) can be calculated using row-major order as

Address(Arr(12,3))=200+4[4(12-1)+(3-1)]

=200+4[4*11+2]

=200+4[44+2]

=200+4[46]

=200+184

=384

Again using column-major order Address(Arr(12,3))=200+4[25(3-1)+(12-1)]

=200+4[25*2+11]

=200+4[50+11]

=200+4[61]

=200+244

=444

Sparse matrix

Matrix with relatively a high proportion of zero entries are called

sparse matrix. Two general types of n-square sparse matrices are

there which occur in various

applications are mention in figure below(It is sometimes customary to

omit blocks of zeros in a matrix as shown in figure below)

4 5 -3

3 -5 1 4 3

1 0 6 9 -3 6

-7 8 -1 3 2 4 -7

5 -2 0 -8 3 0

Triangular matrix Tridiagonal matrix

Triangular matrix

This is the matrix where all the entries above the main diagonal are

zero or equivalently where non-zero entries can only occur on or

below the main diagonal is called a (lower)Triangular matrix.

Tridiagonal matrix

This is the matrix where non-zero entries can only occur on the

diagonal or on elements immediately above or below the diagonal is

called a Tridiagonal matrix. The natural method of representing

matrices in memory as two-dimensional arrays may not be suitable for

sparse matrices i.e. one may save space by storing only those

entries which may be non-zero.

STACKS & QUEUES

Fundamental idea about Stacks

In computer science, a stack is a particular kind of abstract data type

or collection in which the principal (or only) operations on the

collection are the addition of an entity to the collection, known as

push and removal of an entity, known as pop. The relation between

the push and pop operations is such that the stack is a Last-In-First-

Out (LIFO) data structure. In a LIFO data structure, the last

element added to the structure must be the first one to be removed.

This is equivalent to the requirement that, considered as a linear data

structure, or more abstractly a sequential collection, the push and

pop operations occur only at one end of the structure, referred to as

the top of the stack. Often a peek or top operation is also

implemented, returning the value of the top element without removing

it.

A stack may be implemented to have a bounded capacity. If the stack

is full and does not contain enough space to accept an entity to be

pushed, the stack is then considered to be in an overflow state. The

pop operation removes an item from the top of the stack. A pop either

reveals previously concealed items or results in an empty stack, but,

if the stack is empty, it goes into underflow state, which means no

items are present in stack to be removed.

A stack is a restricted data structure, because only a small number of

operations are performed on it. The nature of the pop and push

operations also means that stack elements have a natural order.

Elements are removed from the stack in the reverse order to the

order of their addition. Therefore, the lower elements are those that

have been on the stack the longest.

Array representation of Stack

In most high level languages, a stack can be easily implemented

either through an array or a linked list. What identifies the data

structure as a stack in either case is not the implementation but the

interface: the user is only allowed to pop or push items onto the

array or linked list, with few other helper operations. The following

will demonstrate both implementations, using C.

Array

The array implementation aims to create an array where the first

element (usually at the zero-offset) is the bottom. That is, array[0] is

the first element pushed onto the stack and the last element popped

off. The program must keep track of the size, or the length of the

stack. The stack itself can therefore be effectively implemented as a

two-element structure in C:

ty

p

e

d

e

f

s

t

r

u

c

t

{

s

i

z

e

_

t

s

i

z

e

;

int items[STACKSIZE];

} STACK;

The push() operation is used both to initialize the stack, and to store

values to it. It is responsible for inserting (copying) the value into the

ps->items[] array and for incrementing the element counter (ps-

>size). In a responsible C implementation, it is also necessary to

check whether the array is already full to prevent an overrun.

Algorithm 1: PUSH (STACK, TOP, MAXSTK, ITEM)

This procedure pushes an item on to a stack.

• [Stack already filled]?

If TOP = MAXSTK, then: Print: OVERFLOW, and Return.

• Set TOP: = TOP + 1. [Increase TOP by 1].

• Set STACK [TOP]: = ITEM. [Inserts ITEM in new TOP position].

• Return.

Algorithm 2: POP (STACK, TOP, ITEM)

This procedure deletes the TOP element of STACK and assigns it to

the variable ITEM.

• [Stack has an item to be removed]

If TOP = 0, then: Print: UNDERFLOW and Return.

• Set ITEM: =STACK [TOP]. [Assign TOP element to ITEM].

• Set TOP: = TOP – 1 [Decrease TOP by 1].

• Return.

If we use a dynamic array, then we can implement a stack that

can grow or shrink as much as needed. The size of the stack is

simply the size of the dynamic array. A dynamic array is a very

efficient implementation of a stack, since adding items to or removing

items from the end of a dynamic array is dynamically with respect to

time.

Arithmetic expression, polish notation &

Conversion Arithmetic

The expression for adding the numbers 1 and 2 is, in prefix notation,

written "+ 1 2" rather than "1 + 2". In more complex expressions, the

operators still precede their operands, but the operands may

themselves be nontrivial expressions including operators of their

own. For instance, the expression that would be written in

conventional infix notation as

(5 − 6) × 7

can be written in prefix as

× (− 5 6) 7

Since the simple arithmetic operators are all binary (at least, in

arithmetic contexts), any prefix representation thereof is

unambiguous, and bracketing the prefix expression is unnecessary.

As such, the previous expression can be further simplified to

× − 5 6 7

The processing of the product is deferred until its two operands

are available (i.e., 5 minus 6, and 7). As with any notation, the

innermost expressions are

evaluated first, but in prefix notation this "innermost-ness" can be

conveyed by order rather than bracketing.

In the classical notation, the parentheses in the infix version were

required, since moving them

5 − (6 × 7)

or simply

removing

them 5 − 6 ×

7

would change the meaning and result of the overall expression, due

to the precedence rule.

Similarly

5 − (6 × 7)

can be written in Polish notation as

– 5 × 6 7

Polish notation

Polish notation, also known as Polish prefix notation or simply prefix

notation is a form of notation for logic, arithmetic, and algebra. Its

distinguishing feature is that it places operators to the left of their

operands. If the arity of the operators is fixed, the result is a syntax

lacking parentheses or other brackets that can still be parsed without

ambiguity. The Polish logician Jan Łukasiewicz invented this notation

in 1924 in order to simplify sentential logic.

The term Polish notation is sometimes taken (as the opposite of infix

notation) to also include Polish postfix notation, or Reverse Polish

notation, in which the operator is placed after the operands.

When Polish notation is used as a syntax for mathematical

expressions by interpreters of programming languages, it is readily

parsed into abstract syntax trees and can, in fact, define a one-to-

one representation for the same.

Conversion between Infix, Prefix and Postfix Notation

We are accustomed to write arithmetic expressions with the

operation between the two operands: a+b or c/d. If we write

a+b*c, however, we have to apply precedence rules to avoid the

ambiguous evaluation (add first or multiply first?). There's no real

reason to put the operation between the variables or values.

They can just as well precede or follow the operands. You

should note the advantage of prefix and postfix: the need for

precedence rules and parentheses are eliminated.

Example of expression in three notations.

Infix Prefix Postfix

a + b + a b a b +

a + b * c + a * b c a b c * +

(a + b) * (c - d) * + a b - c d a b + c d - *

b * b - 4 * a * c

40 - 3 * 5 + 1

Postfix expressions are easily evaluated with the aid of a stack.

Postfix Evaluation Algorithm

Assume we have a string of operands and operators, an informal,

by hand process is

• Scan the expression left to right

• Skip values or variables (operands)

• When an operator is found, apply the operation to the

preceding two operands

• Replace the two operands and operator with the calculated value (three

symbols are replaced with one operand)

• Continue scanning until only a value remains--the result of the expression

Algorithm: This algorithm finds the VALUE of an arithmetic

expression P written in postfix notation.

• Add the right parentheses‖)‖ at the end of P.

• Scan P from left to right and repeat step 3 and 4 for each element

of P until the sentinel ―)‖ is encountered.

• If an operand is encountered, put it on STACK.

• If an operator is encountered, then:

• Remove the two top elements from the STACK

• Evaluates these two operators using that operator.

• Place the result of (b)

back on STACK. [End of If

structure]

[End of step 2 loop]

• Set VALUE equal to the top element of STACK.

• EXIT.

Transforming Infix to Postfix Expression: Let Q be an arithmetic

expression written in infix notation. Besides operands and operators,

Q may also contain left and right parentheses. We assume that the

operators in Q consists only the exponentials, multiplication, Division,

addition and subtractions, and that they have the usual three level of

precedence as given above. We also assume that the operators on

the same level, including exponentiations, are performed from left to

right unless otherwise indicated by the parentheses.

The following algorithm transforms the infix expression Q into its

equivalent postfix expression P. The algorithm uses a stack to

temporarily hold operators and left parentheses. The postfix

expression P will be constructed from left to right using the

operands from Q and the operators which are removed from STACK.

We begin by pushing a left parenthesis onto STACK and adding a

right

parenthesis at the end of Q. The algorithm is completed when stack is empty.

Algorithm: Polish (Q, P)

Suppose Q is an arithmetic expression written in infix notation. This

algorithm finds the equivalent postfix expression P.

• Push ―(―onto STACK, and add ―)‖ to the end of Q.

• Scan Q from left to right and repeat step 3 to 6 for each element of

Q until the STACK is empty.

• If an operand is encountered, add it to P.

• If a left parenthesis is encountered, push it onto STACK.

• If an operator is encountered, then:

• Repeatedly POP from STACK and add to P each operator (on the

top of STACK) which has the same precedence as or higher

precedence than that operator.

• Add that

operator to

STACK. [End of if

structure]

• If a right parenthesis is encountered, then:

• Repeatedly pop from the STACK and add to P each operator until

a left parenthesis is encountered.

• Remove the left parenthesis.[Do not add the left

parenthesis to P]. [End of if structure]

[End of step 2 loop].

• EXIT.

Application of stack, recursion

Recursion is the process of repeating items in a self-similar way. For

instance, when the surfaces of two mirrors are exactly parallel with

each other, the nested images that occur are a form of infinite

recursion. The term has a variety of meanings specific to a variety of

disciplines ranging from linguistics to logic. The most common

application of recursion is in mathematics and computer science,

in which it refers to a method of defining functions in which the

function being defined is applied within its own definition. Specifically,

this defines an infinite number of instances (function values), using a

finite expression that for some instances may refer to other

instances, but in such a way that no loop or infinite chain of

references can occur. The term is also used more generally to

describe a process of repeating objects in a self-similar way.

A classic example of recursion is the definition of the factorial

function, given here in C code:

unsigned int

factorial(unsigned int

n) { if (n == 0) {

return 1;

} else {

return n * factorial(n - 1);

}

}

Queues:

Queue is a linear list of elements in which deletions can take place

only at one end, called the front and insertions can take place only

at the other end, called the rear. The terms“front” and “rear” are

used in describing a linear list only when it is implemented as a

queue.

Queue are also called first-in first-out (FIFO) lists, since the first

elements enter a queue will be the first element out of the queue. In

other words, the order in which elements enter a queue is the

order in which they leave. This contrasts with stacks, which are

last-in first-out (LIFO) lists.

Queues abound in everyday life. The automobiles waiting to pass

through an intersection form a queue. In which the first car in line is

the first car through; the people waiting in line at a bank form a

queue, where the first person in line is the

first person to be waited on; and so on. An important example of a

queue in computer science occurs in a timesharing system, in which

programs with the same priority form a queue while waiting to be

executed.

Representation of queues:

Queues may be represented in the computer in various ways,

usually by means at one-way lists or linear arrays. Unless otherwise

stated or implied, each of our queues will be maintained by a linear

array QUEUE and two pointer variables: FRONT, containing the

location of the front element of the queue; and REAR, containing the

location of the rear element of the queue. The condition FRONT =

NULL will indicate that the queue is empty. Following figure shows

the way the array in Figure will be stared in memory using an array

QUEUE with N elements. Figure also indicates the way elements will

be deleted from the queue and the way new elements will be added

to the queue. Observe that whenever an element is deleted from the

queue, the value of FRONT is increased by 1; this can be

implemented by the assignment

FRONT: = Rear + 1

Similarly, whenever an element is added to the queue, the value of

REAR is increased by 1; this can be implemented by the assignment

REAR: = Rear +1

This means that after N insertion, the rear element of the queue will

occupy QUEUE [N] or, in other words; eventually the queue will

occupy the last part of the array. This occurs even though the queue

itself may not contain many elements.

Suppose we want to insert an element ITEM into a queue will occupy

the last part of the array, i.e., when REAR=N. One way to do this is to

simply move the entire queue to thee beginning of the array,

changing FRONT and REAR accordingly, and then inserting ITEM as

above. This procedure may be very expensive. The procedure we

adopt is to assume that the array QUEUE is circular, that is, that

QUEUE [1] comes after QUEUE [N] in the array. With this

assumption, we insert ITEM into the queue by assigning ITEM to

QUEUE [1]. Specifically, instead of

increasing REAR to N+1, we reset REAR=1 and

then assign QUEUE [REAR]: = ITEM

Similarly, if FRONT = N and an element of QUEUE is deleted, we

reset FRONT = 1 instead of increasing FRONT to N +1. (Some

readers may recognize this as modular arithmetic, discussed in Sec.

2.2)

Suppose that our queue contains only one element, i.e.,

suppose that FRONT = REAR # NULL

And suppose that the element is deleted.

Then we assign FRONT: = NULL and REAR:

= NULL

Priority Queues:

A priority queue is a collection of elements such that each element

has been assigned a priority and such that the order in which

elements are deleted and processed comes from the which following

rule:

• An element of higher priority is processes before any element of lower priority.

• Two elements with the same priority are processes according to

the order in which they were added to the queue.

A prototype of a priority queue is a timesharing system: programs of

high priority are processed first, and programs with the same priority

form a standard queue. There are various ways of maintaining a

priority queue in memory. We discuss two of them here: one uses a

one – way list, and the other uses multiple queues. The ease or

difficulty in adding elements to or deleting them from a priority queue

clearly depends on the representation that one chooses.

One-Way List of Representation of a Priority Queue

One way to maintain a priority queue in memory is by means of a one –

way list, as follows:

• Each node in the list will contain three items of information ― an

information field INFO, a priority number PRN and a link number

LINK

• A node X precedes a node Y in the list (1) when X has higher priority that Y or

• when both have the same priority but X was added to the list before Y. This

means that the order in the One-way list corresponds to the order

of the priority queue.

Priority numbers will operate in the usual way: the priority number,

the higher the priority.

Polish Notations: From most common arithmetic operations, the

operator symbol is placed between its two operands. For example,

A + B C – D E * F G/H

This is called Infix Notation. With this notation we must

distinguish between (A + B) *C and A + (B * C)

Polish notation, named after the polish mathematician refers to the

notation in which the operator symbol is placed before its two

operands. For example:

+AB -CD *EF /GH

We translate step by step the following infix expressions into polish

notations using bracket [] to indicate the partial translation:

(A+B) * C= [+AB]*C = *+ ABC

The fundamental property of polish notation is that the order in which

the operations are to be performed is completely determined by the

positions of the operators and the operands in the expression.

Accordingly, one never needs parentheses when writing expressions

in polish notations.

Reverse Polish Notation refers to the analogous notation in which

the operator symbol is placed after its two operands:

AB+ CD- EF* GH/

Again, one never needs parentheses to determine the order of

operations in any arithmetic expressions written in reverse polish

notation. This notation is frequently called POSTFIX (orSUFIX)

notation, whereas prefix notation is term used for polish notations,

discussed in preceding paragraph.

The computer usually evaluates an arithmetic expression written in

infix notation in two steps. First, it converts the expression to postfix

notation, and then it evaluates the post fix expression. In each step,

the stack is the main tool that is

used to accomplish the given task.

Evaluation of a Postfix Expression: Suppose P is the arithmetic

expression written in postfix notation. The following algorithm, which

uses a stack to hold operands, evaluates P.

What is Pointer

A pointer is a variable whose value is the address of another

variable, i.e., direct address of the memory location. Like any

variable or constant, you must declare a pointer before you can use it

to store any variable address. The general form of a pointer variable

declaration is:

type *var-name;

Here, type is the pointer's base type; it must be a valid C data type

and var- name is the name of the pointer variable. The asterisk * you

used to declare a pointer is the same asterisk that you use for

multiplication. However, in this statement the asterisk is being used

to designate a variable as a pointer. Following are the valid pointer

declaration:

int *ip; /* pointer to

an integer */ double *dp;

 /* pointer to a

double */ float *fp;

 /* pointer to a float

*/

char *ch /* pointer to a character */

The actual data type of the value of all pointers, whether integer,

float, character, or otherwise, is the same, a long hexadecimal

number that represents a memory address. The only difference

between pointers of different data types is the data type of the

variable or constant that the pointer points to.

How to use Pointers?

There are few important operations, which we will do with the help of

pointers very frequently. (a) we define a pointer variable (b) assign

the address of a variable to a pointer and (c) finally access the

value at the address available in the pointer variable. This is done

by using unary operator * that returns the value

of the variable located at the address specified by its operand.

Following example makes use of these operations:

#include <stdio.h>

int main ()

{

int var = 20; /* actual variable

declaration */ int *ip; /*

pointer variable declaration */

ip = &var; /* store address of var in pointer variable*/

printf("Address of var variable: %x\n", &var);

/* address stored in pointer variable */

printf("Address stored in ip variable:

%x\n", ip);

/* access the value using

the pointer */ printf("Value

of *ip variable: %d\n", *ip);

return 0;

}

When the above code is compiled and executed, it produces result

something as follows:

Address of var variable:

bffd8b3c Address stored

in ip variable: bffd8b3c

Value of *ip variable: 20

NULL Pointers in C

It is always a good practice to assign a NULL value to a pointer

variable in case you do not have exact address to be assigned.

This is done at the time of variable declaration. A pointer that is

assigned NULL is called a null pointer.

The NULL pointer is a constant with a value of zero defined in

several standard libraries. Consider the following program:

#include <stdio.h>

int main ()

{

int *ptr = NULL;

printf("The value of ptr is : %x\n", ptr);

return 0;

}

When the above code is compiled and executed, it produces the

following result: The value of ptr is 0

On most of the operating systems, programs are not permitted to

access memory at address 0 because that memory is reserved by the

operating system. However, the memory address 0 has special

significance; it signals that the pointer is not intended to point to an

accessible memory location. But by convention, if a pointer contains

the null (zero) value, it is assumed to point to nothing.

To check for a null pointer you can use an if

statement as follows: if(ptr) /* succeeds if p is not

null */

if(!ptr) /*

succeeds if p is null

*/ C Pointers in

Detail:

Pointers have many but easy concepts and they are very important

to C programming. There are following few important pointer

concepts which should be clear to a C programmer:

LINKED LIST

It is the linear collection of data elements called nodes that are stored

in different memory location connected by pointers.

Advantages of linked list:-

Dynamic data structure that can grow an string. Efficient memory

utilization (exact amount of data storage). Insertion deletion &

pupation are easy & efficient. Data stored in RAM but not sequential .

Disadvantages of linked list:-

More memory space is needed if no. of filed are more. Logical &

physical ordering of node are different. Searching is solve . Difficult to

program because pointer manipulation is required.

Types of linked list:-

Linear linked list or one way linked list or single list. Double linked list

or two way linked list are two way linked list. Circular linked list is two

types i.e. (1) Single circular list (2) Double circular list.

• Linear linked list:- It is a one way collection of nodes where the

linear order is maintained by pointers. Nodes are not in

sequence, each node implemented in comp. by a self

referential structure . Each node is divided in two parts. First

part contain the information of the element (INFO). Second

part is linked field contains the add. Of next node in the list

(LINK) field or next pointer filed .In c linked list is created using

structured pointer and Mallow (Allocation of memory). The

structure of a node is strict node.

{

Into info;

Strict node*link;

};

The new node is created and addresses of the new node is assigned

to stack has start.

{START =(Strict node*) mallow(size of (strict node))}

Representation of the linked list in memory:-

Let list be a linked list. Then list required to linear arrays called INFO and LINK.

E

O

H

L

L

4

1

6

2

Such that INFO[k] and LINK[k] contain the information part & next

pointer denoted by a NULL which indicates the end of the LIST.

RT

STA

INFO

link

Memory allocation of the linear linked list:-

The computer maintains a special list which consist of a list of all free

memory calls & also has its own pointer is called the list of available

space or the free storage list or the free pool .

Suppose insertion are to be performed on linked list then unused

memory calls I the array will also be linked to gather to form a linked

list using AVAIL. As its list pointer variable such a data structure will

be denoted by writing LIST(INFO,LINK,START,AVAIL)

RT

STA

Copy Right DTE&T,Odisha Page 50

3

K

6

INFO LINK

AVAIL

Avail Space

Garbage collection definition:-

The operating system of a computer may periodically collect all the

deleted space on to the free storage list. Any technique which does

these collections is called garbage collection.

When we delete a particular note from an existing linked list or delete

the linked list the space occupied by it must be given back to the free

pool. So that the memory can be the used by some other program

that needs memory space.

To the free pool is done.

The operating system will perform this operation whenever it finds

the CPU idle or whenever the programs are falling short of memory

space. The OS scans through the entire memory cell & marks those

cells. That are being by some program then it collects the entire cell

which are not being used & add to the free pool. So that this cells can

be used by other programs. This process is called garbage

collection. The garbage collection is invisible to the programmer.

Traversing of linked list:-

Algorithm:-

Let list be a linked list in memory, this algorithm traverse LIST

applying & operation PROCESS to each element of LIST. The

variable PTR to point to the nodes currently being processed.

Step 1:-set PTR=START [initialize

pointer PTR] Step 2:-repeat step 3 &

step 4 while PTR! = NULL Step 3:-

apply PROCESS to INFO[PTR]

STEP 4:-SET PTR=LINK [PTR]

[PTR now points to

the next node] End of

step 2 loop

Step 5:-exit

Algorithm for searching

linked list:- SEARCH

(INFO,LINK,START,ITEM,LO

C)

LIST is a linked list in memory , this algorithm finds the location LOC

of the node where ITEM first appears in LIST or sets , LOC=NULL.

Step 1:-set PTR=START[initialize

pointer PTR] Step 2:-repeat step 3

while PTR ! = NULL Step 3:-if

ITEM = INFO[PTR]

Then set LOC = PTR & exit

Else

Set PTR = LINK[PTR]

[PTR now points

to next node] [End

of if structure]

End of step 2 loop

Step 4:-[Search is

unsuccessful

] Set LOC =

NULL

Step 5:-Exit

Inserting the node at the

beginning of the list:- INSERT

(INFO, LINK, START, AVAIL,

ITEM)

Step 1:-[over flow?]

If AVAIL = NULL, then write over flow & exit

Step 2:-[REMOVE first node from

AVAIL LIST] Set NEW =

AVAIL & AVAIL = LINK

[AVAIL]

Step 3:-set INFO [NEW] = ITEM

[Copy is new data into new node]

Step 4:-set LINK [NEW] = START

[New node now points to original first node]

Step 5:-set START = NEW

[changes start so its point

to new node] Step 6:-exit

Inserting after a given node:-

INSLOC (INFO, LINK, START, AVAIL, LOC, ITEM)

This algorithm inserts ITEM. so that ITEM follows the node

with location [LOC] or insert ITEM as the first node when LOC =

NULL

Step 1:-[over flow] if AVAIL = NULL, then write

overflow & exit. Step 2:-[Remove first node from

AVAIL list]

Set NEW = AVAIL & AVAIL = LINK [AVAIL]

Step 3:-set INFO [NEW] = ITEM

[Copy is new data into new node]

Step 4:-if LOC = NULL, then [insert as

first node] Set LINK [NEW] =

START & START = NEW

Else

[INSERT after node with location LOC]

Set LINK [NEW] = LINK [LOC] and LINK [LOC] = NEW

[

End

of

if]

Ste

p

5:-

Exit

Deletion from a linked list:-

DEL (INFO, LINK, START, AVAIL, LOC, LOCP)

This algorithm deletes the node N with location LOC, LOCP is

the location of the node LOCP = NULL.

Step 1:-if LOCP = NULL, then set = START=LINK [START]

[Delete first node]

Else

Set = LINK [LOCP] = LINK [LOC]

[Deletes node

N] [End of if]

Step 2:-[Return deleted node to the

AVAIL LIST] Set = LINK [LOC]

= AVAIL & AVAIL = LOC

Step

3:-Exit

Head

er

linked

list:-

A header linked list is a special type of linked list. Which always

contains a special node called header node at the beginning of the

list so in a header linked list will not point to first node of the list. But

start will contain the address of the header node.

There are two types of header linked list i.e. Grounded header linked

list & Circular header linked list.

Grounded header linked list:-

STAR

It is a header linked list where last node contains the NULL pointer.

LINK [start] = NULL indicates that a grounded header linked list is

empty.

H

eader node Circular header

linked list:-

It is a header linked list where the last node points back to the header node.

STAR

Header node

LINK [START] = START is indicates that a circular linked list is empty.

Circular header list are frequently used instead of ordinary linked list because

many operation are much easier to implement header list.

This comes from the following two properties, all circular header lists.

• The NULL pointer is not used & hence contains valid address.

• Every ordinary node has a predecessor. So the first

node may not required a special case.

TREE

A tree is a non-linear data structure that consists of a root node and

potentially many levels of additional nodes that form a hierarchy. A

tree can be empty with no nodes called the null or empty tree or a

tree is a structure consisting of one node called the root and one or

more subtrees.

Thus tree is a finite set of one or more nodes

such that : i> There is a specially

designated node called the root

ii> The remaining nodes are partitioned into n >= 0 disjoint sets

T1,T2,…..,Tn where each of these sets is a tree .

T1,T2,…..,Tn are called the subtrees of the root .

Terminologies used in Trees

• Root - the top node in a tree.

• Node - the item of information .

• Parent - the converse notion of child.

• Siblings - nodes with the same parent.

• Children nodes – roots of the subtrees of a node , X , are the

children of X .

• Descendant - a node reachable by repeated proceeding

from parent to child.

• Ancestor - a node reachable by repeated proceeding from child to parent.

• Leaf or Terminal node - a node with no children (degree zero) .

• Nonterminal nodes – nodes other than terminal nodes .

• Internal node - a node with at least one child.

• External node - a node with no children.

• Degree - number of sub trees of a node.

• Edge - connection between one node to another.

• Path - a sequence of nodes and edges connecting a node

with a descendant.

• Level - The level of a node is defined by 1 + the number of

connections between the node and the root.

• Height - The height of a node is the length of the longest

downward path between the node and a leaf.

• Forest - A forest is a set of n ≥ 0

disjoint trees. If we remove the root of a tree we get a forest.

A simple unordered tree

The node labeled 7 has two children, labeled 2 and 6, and one

parent, labeled 2. The root node, at the top, has no parent.

Binary Tree

Definition: A binary tree is a finite set of nodes which is either empty

or consists of a root and two disjoint binary trees called the left

subtree and the right subtree. We can define the data structure

binary tree as follows:

structure BTREE

declare CREATE() -->

btree

ISMTBT(btree,item,btree)

--> boolean

MAKEBT(btree,item,btre

e) --> btree

LCHILD(btree) --> btree

DATA(btree

) --> item

RCHILD(btr

ee) -->

btree

for all p,r in btree, d in item let

ISMTBT(CREATE)::=true

ISMTBT(MAKEBT(p,d,r))::=false

LCHILD(MAKEBT(p,d,r))::=p;

LCHILD(CREATE)::=error

DATA(MAKEBT(p,d,r))::d;

DATA(CREATE)::=error

RCHILD(MAKEBT(p,d,r))::=r;

RCHILD(CREATE)::=error

end

end BTREE

This set of axioms defines only a minimal set of operations on binary

trees. Other operations can usually be built in terms of these. The

distinctions between a binary tree and a tree should be analyzed.

First of all there is no tree having zero nodes, but there is an empty

binary tree. The two binary trees below are different. The first one has

an empty right subtree while the second has an empty left subtree. If

these are regarded as trees, then they are the same despite the fact

that they are drawn slightly differently.

Binary Tree Representations

A full binary tree of depth k is a binary tree of depth k having

pow(2,k)-1 nodes. This is the maximum number of the nodes such a

binary tree can have. A very elegant sequential representation for

such binary trees results from sequentially numbering the nodes,

starting with nodes on level 1, then those on level 2 and so on.

Nodes on any level are numbered from left to right. This numbering

scheme

gives us the definition of a complete binary tree. A binary tree with n

nodes and a depth k is complete iff its nodes correspond to the

nodes which are numbered one to n in the full binary tree of depth k.

The nodes may now be stored in a one dimensional array tree, with

the node numbered i being stored in tree(i).

If a complete binary tree with n nodes (i.e., depth=[LOG2N]+1) is

represented sequentially as above then for any node with index i,

1<=i<=n we have

• parent(i) is at [i/2] if i is not equal to 1. When i=1, i is the root and

has no parent.

• lchild(i) is at 2i if 2i <= n . If 2i > n, then i has no left child.

• rchild(i) is at 2i+1 if 2i+1 <= n .If 2i+1 > n, then i has no right child.

Proof: We prove (ii). (iii) is an immediate consequence of (ii) and

the numbering of nodes on the same level from left to right. (i) follows

from (ii) and (iii). We prove

(ii) by induction on i. For i=1, clearly the left child is at 2 unless 2>n in

which case 1 has no left child. Now assume that for all j, 1<=j<=i

lchild(j) is at 2j .Then the two nodes immediately preceeding

lchild(i+1) in the representation are the right child of I and the left

child of I .The left child of i is at 2i .Hence,the left child of i+1 is at

2i+2=2(i+1) unless 2(i+1)>n inwhich case i+1 has no left child. This

representation can clearly be used for all binary trees though in most

cases there will be a lot of unutilized space. For complete binary

trees the representation is ideal as no space is wasted.

Binary Tree Traversal

A full traversal produces a linear order for the information in a tree.

This linear order may be familiar and useful. When traversing a

binary tree we want treat each node and its subtrees in the same

fashion. If we let L, D, R stand for moving left, printing the data, and

moving right when at a node then there are six possible

combinations of traversal: LDR, LRD, DLR, DRL, RDL, and RLD. If

we adopt the convention that we traverse left before right then only

three traversals remain: LDR, LRD, and DLR. To these we assign the

names inorder, postorder and preorder because there is a natural

correspondence between these traversals and producing the infix,

postfix and prefix forms of an expression.

Inorder Traversal: informally this calls for moving down the tree

towards the left untilyou can go no farther. Then you "visit" the node,

move one node to the right and continue again. If you cannot move

to the right, go back one more node. A precise way of describing this

traversal is to write it as a recursive procedure.

Procedure INORDER(T)

// T is a binary tree where each node has three fields

LCHILD,DATA,RCHILD // If T<> 0 then [call INORDER(LCHILD(T))

Print (DATA(T))

Call

(INORDER(RCHILD(T))] end

INORDER

A second form of traversal is preorder:

procedure

PREORDER (T)

If T<> 0 then

[print (DATA(T))

Call

PREORDER(LCH

ILD(T)) Call

PREORDER(RCH

ILD(T))]

end PREORDER

The ext traversal method is called postorder .

procedure POSTORDER (T)

If T<> 0 then [call

POSTORDER(LCHILD(T)) Call

POSTORDER(RCHILD(T))]

[print

(DAT

A(T))]

end

POST

ORDE

R

Therefore, the Preorder traversal of the above

tree will be : 7, 1, 0, 3, 2, 5, 4, 6, 9, 8, 10

Therefore, the Postorder traversal of the above

tree will be : 0, 2, 4, 6, 5, 3, 1, 8, 10, 9, 7

Therefore, the Inorder traversal of the above tree will be :

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Binary Search Tree

A binary search tree (BST), sometimes also called an ordered or

sorted binary tree, is a node-based binary tree data structure where

each node has a comparable key (and an associated value) and

satisfies the restriction that the key in any node is larger than the

keys in all nodes in that node's left subtree and smaller than the keys

in all nodes in that node's right sub-tree. Each node has no more

than two child nodes. Each child must either be a leaf node or the

root of another binary search tree. The left sub-tree contains only

nodes with keys less than the parent node; the right sub-tree

contains only nodes with keys greater than the parent node. The

common properties of a binary search tree are :

• The left subtree of a node contains only nodes with keys

less than the node's key.

• The right subtree of a node contains only nodes with keys

greater than the node's key.

• The left and right subtree each must also be a binary search tree.

• Each node can have up to two successor nodes.

• There must be no duplicate nodes.

• A unique path exists from the root to every other node.

Searching

• Start at the root node as current node

• If the search key‘s value matches the current node‘s key then found a match

• If search key‘s value is greater than current node‘s

• If the current node has a right child, search right

• Else, no matching node in the tree

• If search key is less than the current node‘s

• If the current node has a left child, search left

• Else, no matching node in the tree

Insertion

• Always insert new node as leaf node

• Start at root node as current node

• If new node‘s key < current‘s key

• If current node has a left child, search left

• Else add new node as current‘s left child

• If new node‘s key > current‘s key

• If current node has a right child, search right

• Else add new node as current‘s right child

Deletion

Basically, in can be divided into two stages:

• search for a node to remove;

• if the node is found, run remove algorithm.

• Node to be removed has no children.

Algorithm sets corresponding link of the parent to NULL and disposes the node.

Example. Remove -4 from a BST.

• Node to be removed has one child.

It this case, node is cut from the tree and algorithm links single

child (with it's subtree) directly to the parent of the removed node.

• . Node to be removed has two children

Example. Remove 18 from a BST.

1 . Transform the above tree into the following tree

Method :

• choose minimum element from the right subtree (19 in the

example);

• replace 5 by 19;

• hang 5 as a left child.

• remove a node, which has two children:

• find a minimum value in the right subtree;

• replace value of the node to be removed with found

minimum. Now, right subtree contains a duplicate!

• apply remove to the right subtree to remove a duplicate.

Notice, that the node with minimum value has no left child and,

therefore, it's removal may result in first or second cases only.

Example. Remove 12 from a BST.

.

• Find minimum element in the right

subtree of the node to be removed. In current example it is 19.

• Replace 12 with 19. Notice, that only

values are replaced, not nodes. Now we have two nodes with the

same value.

• Remove 19 from the left subtree

GRAPH

Definition

A graph, G, consists of two sets V and E. V is a finite non-empty set

of vertices. E is a set of pairs of vertices, these pairs are called edges.

V(G) and E(G) will represent the sets of vertices and edges of graph

G. We will also write G = (V,E) to represent a graph.

In an undirected graph the pair of vertices representing any edge is

unordered . Thus, the pairs (v1, v2) and (v2, v1) represent the same

edge.

In a directed graph each edge is represented by a directed pair (v1,

v2). v1 is the tail and v2 the head of the edge. Therefore <v2, v1>

and <v1, v2> represent two different edges.

Terminologies used in graph

• A graph G = (V, E) where

• V = a set of vertices

• E = a set of edges

• Edges:

• Each edge is defined by a pair of vertices

• An edge connects the vertices that define it

• In some cases, the vertices can be the same

Vertices:

• Vertices also called nodes

• Denote vertices with labels

Representation:

• Represent vertices with circles, perhaps containing a label

• Represent edges with lines

between circles Example:

• V = {A,B,C,D}

o E = {(A,B),(A,C),(A,D),(B,D),(C,D)}

• Path: sequence of vertices in which each pair of successive vertices is

connected by an edge

• Cycle: a path that starts and ends on the same vertex

• Simple path: a path that does not cross itself

• That is, no vertex is repeated (except first and last)

• Simple paths cannot contain cycles

• Length of a path: Number of edges in the path

• Sometimes the sum of the weights of the edges

Representation

Adjacency list

Vertices are stored as records or objects, and every vertex stores a

list of adjacent vertices. This data structure allows the storage of

additional data on the vertices. Additional data can be stored if edges

are also stored as objects, in which case each vertex stores its

incident edges and each edge stores its incident vertices.

Adjacency matrix

A two-dimensional matrix, in which the rows represent source

vertices and columns represent destination vertices. Data on edges

and vertices must be stored externally. Only the cost for one edge

can be stored between each pair of vertices.

Incidence matrix

A two-dimensional Boolean matrix, in which the rows represent the

vertices and columns represent the edges. The entries indicate

whether the vertex at a row is incident to the edge at a column.

Directed graph

• Digraph: A graph whose edges are directed (i.e have a direction)

• Edge drawn as arrow

• Edge can only be traversed in direction of arrow

o Example: E = {(A,B), (A,C), (A,D), (B,C), (D,C)}

Undirected Graph

A graph where there is no implied direction on edge between nodes

• In diagrams, edges have no direction (i.e they are not arrows)

• Can traverse edges in either directions

Adjacency matrix representation

Graphs can be classified by whether or not their edges have weights

• Weighted graph: edges have a weight

• Weight typically shows cost of traversing

• Unweighted graph: edges have no weight

• Edges simply show connections

• Adjacency Matrix: 2D array containing weights on edges

• Row for each vertex

• Column for each vertex

• Entries contain weight of edge from row vertex to column vertex

• Entries contain ∞ (ie Integer'last) if no edge from

row vertex to column vertex

• Entries contain 0 on diagonal (if self edges not allowed)

• undirected graph

A B C D A 0 1 1 1

B 1 0 ∞ 1

C 1 ∞ 0 1

D 1 1 1 0

• directed graph

 A B C D

A ∞ 1 1 1

B ∞ ∞ ∞ 1

C ∞ ∞ ∞ ∞

D ∞ ∞ 1 ∞

SORTING SEARCHING & MERGING

SORTING:

Sorting refers to the operation of arranging data in some given order,

such as increasing or decreasing with numerical data or

alphabetically with character data.

BUBBLE SORT:

The bubble sort has no reading characteristics. It is very slow, no

matter what data it is sorting. This algorithm is included for the shake

of completeness not because of any merit. As the largest element is

bubble of sinks up to its final position. It is known as bubble sort.

Algorithm:

BUBBLE
(DATA,N)

Here DATA is an array with N element. This algorithm sorts the

element in DATA. Step 1: [Loop]

Repeat step 2 and step 3

for K=1 to N-1 Step 2: [Initialize pass

pointer PTR]

Set[PTR]=1

Step 3: [Execute pass]

Repeat while PTR <=N-K

• If DATA [PTR] > DATA [PTR+1]

Then interchange DATA [PTR] &

DATA [PTR+1] [End of if structure]

• Set PTR =PTR+1

[End of

Step 1 Loop] Step

4: Exit

Complexity of the Bubble Sort Algorithm

The time for a sorting algorithm is measured in terms of the number of

comparisons. The number f(n) of comparisons in the bubble sort is

easily computed. There are n-1 comparisons during the first pass,

which places the largest element in the last position; there are n-2

comparisons in the second step, which places the second largest

element in the next to last position and so on.

F(n)=(n-1)+(n-2)+….+2+1=n(n-1)/2=n^2/2+0(n)=0(n^2)

The time required to execute the bubble sort algorithm is

proportional to n^2, Where n is the number of input items.

QUICK SORT:

It is an algorithm of the divide and conquer type. That is the problem

of sorting a set is reduced to the problem of sorting two smaller sets.

Algorithm:

Step 1: [Initialize]

TOP=NULL

Step 2: [Push boundary values of A onto stacks when A has 2 or

more elements.] If N>1, then: TOP=TOP+1, LOWER [1] =1,

UPPER[1] = N

Step 3: Repeat step 4 to 7 while

TOP != NULL Step 4: [Pop sublist

from stacks]

Set

BEG=LOWER[TOP],END=UPP

ER[TOP] TOP=TOP-1

Step 5: Call QUICK(A,N,BEG,ENG,LOC)

Step 6: [Push left sublist onto stacks when it has 2 or

more elements] If BEG<LOC-1, then

TOP=TOP+1,

LOWER[TOP]=BEG,

UPPER[TOP]=LOC-1

Step 7: [Push right sublist onto stacks when it has 2 or

more elements] If LOC+1<END, then

TOP=TOP+1, LOWER[TOP]=LOC+1,

UPPER[TOP]=END

[End

of if structure]

Step 8: Exit

Complexity of the Quick Sort Algorithm

The running time of a sorting algorithm is usually measured by the

number f(n) of comparisons required to sort n elements. The

algorithm has a worst case running time of order n^2/2, but an

average case running time of order n log n.

The worst case occurs when the list is already sorted. Then the first

element will require n comparison to recognize that it remains in the

first position. The first sublist will be empty, but the second sublist will

have n-1 elements. Accordingly, the second element will require n-1

comparison to recognize that it remains in the second position, and

so on.

F(n)=n+(n-1)+….+n(n+1)/2=n^2/2+O(n)=O(n^2)

MERGING:

The operation of sorting is closely related to the process of merging.

The merging of two order table which can be combined to produce a

single sorted table.

This process can be accomplishes easily by successively selecting

the record with the smallest key occurring by either of the table and

placing this record in a new table.

SIMPLE MERGE

SIMPLE MERGE [FIRST,SECOND,THIRD,K]

Given two orders in table sorted in a vector K with FIRST, SECOND, THIRD

The variable I & J denotes the curser associated with the FIRST

& SECOND table respectively. L is the index variable associated with

the vector TEMP. Algorithm

Step 1: [Initialize]

Set I

=

FIRS

T

Set J

=

SEC

OND

Set L = 0

Step 2: [Compare corresponding elements and output

the smallest] Repeat while I < SECOND & J <

THIRD

If K[I] <=

K[J],then

L=L+1 TEMP

[L]=K[I]

I=I+1

E

ls

e

L

=

L

+

1

T

E

M

P

[L

]=

K

[J

]

J

=

J

+

1

Step 3: [Copy remaining unprocessed element in

output area] If I>=SECOND

Then repeat

while J<=THIRD

L=L+1

T

E

M

P

[L

]

=

K

[J

]

J

=

J

+

1

Else

Repeat while I<

SECOND L=L+1

TEMP[L]=K

[I] I=I+1

Step 4: [Copy the element into temporary vector into

original area] Repeat for I=1,2,…..L

K[FIRST-I+1]=TEMP[I]

Step 5: Exit

Complexity of the Merging Algorithm

The input consists of the total number n=r+s of elements in A and B.

Each comparison assigns an elements to the array C, which

eventually has n elements. Accordingly, the number f(n) of

comparisons cannot exceed n:

F(n) <= n = 0(n)

In other words, the merging algorithm can be run

in linear time. WORST CASE : n log= 0[n log n]

AVERAGE CASE : n log n=0[n log n]

SEARCHING:

Searching refers to finding the location i.e LOC of ITEM in an array.

The search is said to be successful if ITEM appears the array &

unsuccessful otherwise we have two types of searching techniques.

• Linear Search

• Binary Search

LINEAR SEARCH:

Suppose DATA is a linear array with n elements. No other

information about DATA, the most intuitive way to search for a given

ITEM in DATA is to compare ITEM with each element of DATA one

by one. First we have to test whether DATA [1]=ITEM, nad then we

test whether DATA[2] =ITEM , and so on. This method which

traverses DATA sequentially to locate ITEM, is called linear search or

sequential search.

Algorithm

LINEAR (DATA, N, ITEM, LOC)

Step 1: [Insert ITEM at the

end of data] Set

DATA [N+1] =

ITEM

Step 2: [Initialize counter]

Set LOC=1

Step 3: [Search for ITEM]

Repeat while DATA

[LOC]!= ITEM Step 4:

[Successful]

If LOC=N+1

Then

Set LOC = 0

Step 5: Exit

Complexity of the Linear Search Algorithm

The complexity of search algorithm is measured by the number f(n)

of comparisons required to find ITEM in DATA where DATA contains

n elements. Two important cases to consider are the average case

and the worst case.

The worst case occurs when one must search through the entire

array DATA. In this case, the algorithm requires

F(n)= n+1

Thus, in the worst case, running time is proportional to n.

The running time of the average case uses the probabilistic notion of

expectation. The probability that ITEM appears in DATA[K], and q is

the probability that ITEM

does not appear in DATA . Since the algorithm uses k comparison

when ITEM appears in DATA[K], the average number of comparison

is given by

F(n) = 1 . p1 + 2 . p2 +…..+ n . pn + (n+1).q

BINARY SEARCH

Suppose DATA is an array which is sorted in increasing

numerical order or equivalently, alphabetically. Then there is an

extremely efficient searching algorithm, called binary search.

Algorithm

Binary search (DATA, LB, UB,

ITEM, LOC) Step 1: [Initialize

the segment variables]

Set BEG := LB, END := UB and MID := INT ((BEG + END)/2)

Step 2: [Loop]

Repeat Step 3 and Step 4 while BEG <= END and DATA

[MID] != ITEM Step 3: [Compare]

If ITEM < DATA [MID]

then set END := MID - 1

Else

Set BEG = MID + 1

Step 4: [Calculate MID]

Set MID := INT ((BEG + END)/2)

Step 5: [Successful search]

If DATA [MID] = ITEM

then set

LOC :=

MID Else

set LOC :=

NULL

Step 6: Exit

Complexity of the Binary Search Algorithm

The complexity is measured by the number f(n) of comparison to

locate ITEM in DATA where DATA contains n elements. Observe

that each comparison reduces the sample size in half. Hence we

require at most f(n) comparison to locate ITEM where

2f(n) > n

Or

equiv

alentl

y

F(n)

=

[log2

n] + 1

The running time for the worst case is approximately equal to

log2 n and the average case is approximately equal to the running

time for the worst case.

FILES AND THEIR ORGANIZATION

INTRODUCTION

Nowadays, most organizations use data collection applications which

collect large amounts of data in one form or other. For example, when

we seek admission in a college, a lot of data such as our name,

address, phone number, the course in which we want to seek

admission, aggregate of marks obtained in the last examination and

so on, are collected. Similarly, to open a bank account, we need to

provide a lot of input. All these data were traditionally stored on paper

documents, but handling these documents had always been a

chaotic and difficult task. It has become a necessary to store the

data in computers in the form of files.

FILE ORGANIZATION

We know that a file is a collection of related records. The main issue

in file management is the way in which the records are organized

inside the file because it has a significant effect on the system

performance. Organization of records means the logical arrangement

of records in the file and not the physical layout of the file as stored

on a storage media.

Since choosing an appropriate file organization is a design decision,

it must be done keeping the priority of achieving good performance

with respect to the most likely usage of the file. Therefore, the

following considerations should be kept in mind before selecting an

appropriate file organization method:

• Rapid access to one or more records.

• Ease of inserting/updating/deleting one or more

records without disrupting the speed of accessing

records(s).

• Efficient storage of records.

• Using redundancy to ensure data integrity.

Although one may find that these requirements are in contradiction

with each other, it is the designer‘s job to find a good compromise

among them to get an adequate solution for the problem at hand. For

example, the ease of addition of records can be compromised to get

fast access to data.

TECHNIQUES COMMONLY USED FOR FILE ORGANIZATION

• Sequential Organization

A sequential organized file stores the record in the order in which

they were entered. That is, the first record that was entered is written

as the first record in the file, the second record entered is written as

the second record in the file, and so on. As a result new records are

added only at the end of the file.

Record 0

Record 1

.................

..

.................

..

Record i

Record

i+1

.................

..

.................

..

Record n-

2

Record n-

1

Sequential files can be read only sequentially, starting with the first

record in the file. Sequential file organization is the most basic way
to organize a large collection of records in a file. The

figure below shows n records numbered from 0 to n-1

stored in a sequential file.

Once we store the records in a file, we cannot make any changes
to the records. We cannot even delete the records

from a sequential file. In case we need to delete or

update one or more

records, we have to replace the records by creating a new file.

In sequential file organization, all the records have the same size
and the same field format, and every field has a fixed

size. The records are sorted based on the value of one

field or a combination

of two or more fields. This field is known as the key.

Each key uniquely identifies a record in a file.

Thus, every record has a

different value for the key field. Records can be sorted

in either ascending or descending order.

Sequential files are generally used to generate reports

or to perform sequential reading of large amount of

data which some programs need to do such as

payroll processing of all the

employees of an organization. Sequential files can be easily stored on both disks

and tapes.

The table below summarizes the features, advantages, and

disadvantages of sequential file organization.

Features Advantages Disadvantages

• Records are written in the

order in which they are

entered.

• Records are read and

written sequentially.

• Deletion or updation of one

or more records calls for

replacing the original file

with a new file that contains

the desired changes.

• Records have the same

size and the same field

format.

• Records are stored on a

key value.

• Generally used for report

generation or sequential

• Simple and easy

to handle.

• No extra

overheads

involved.

• Sequential files

can be stored on

magnetic disks

as well as

magnetic tapes.

• Well suited for

batch oriented

applications.

• Records can

be read

sequentially.

If 1th record

has to be read,

then all the

i-1 records

must be read.

• A new file has

to be

created and the

original file has

to be replaced

with the new file

that contains

 the desired

changes.

reading. • Cannot be used

for

 interactiv

e application

• Relative File Organization

Relative File Organization provides an effective way to access

individual records directly in a relative file organization, records are

ordered by their relative key. It

means the record number represents the location of the record

relative to the beginning of the file. The record numbers range from 0

to n-1, where n is the number of records in the file. For example, the

record with number 0 is the first record in the file. The records in a

relative file are of fixed length.

Therefore, in relative files, records are organized in ascending

relative record number. A relative file can be thought of as a single

dimension table stored on a disk, in which the relative record number

is the index into the table. Relative files can be used for both random

as well as sequential access. For sequential access, records are

simply read one after another.

Relative files provide support for only one key, that is, the relative

record number. This key must be numeric and must take a value

between 0 and the current highest relative record number -1. This

means that enough space must be allocated for the file to contain

the records with relative record numbers between 0 and the highest

record number -1. For example, if the highest relative record number

is 1,000 then space must be allocated to store 1,000 records in the

file. The figure below shows a schematic representation of a relative

file which has been allocated enough space to store 100 records.

Although it has space to accommodate 100 records, not all the

locations are occupied. The locations marked as FREE are yet to

store records in them. Therefore, every location in the table either

stores a record or is marked as FREE.

Relative

record

number

Records

stored in

memory

0 Record 0

1 Record 1

2 FREE

3 FREE

4 Record 4

……………… ……………….

98 FREE

99 Record 99

Relative file organization provides random access by directly jumping to the

record which has to be accessed. If the records are of fixed length

and we know the base address of the file and the length of the

record, then any record i can be accessed using the following

formula:

Address of ith record=base_address+(i-1)* record_length

Note that the base address of the file refers to the starting address of

the file. We took i-1 in the formula because record numbers start

from 0 rather than 1.

Consider the base address of a file is 1000 and each record occupies

20 bytes, then the address of the 5th record can be given as: 1000+

(5-1)*20

=1000+80

=1080

The Table below summarizes the features, advantages, and disadvantages of

Relative file organization.

Features Advantages

Disadvantages

• Provides an

effective way to

access individual

records.

• The record number

represents

the location of the

record relative to the

beginning of the file.

• Records in a relative

file are of fixed

length.

• Relative files can be

used for both

random as well as

sequential

access.

• Ease of processing.

• If the relative record

number of the record

that has to be accessed

is known, then the

record can be

accessed

instantaneously.

• Random access of

records makes access to

relative files fast.

• Allow deletions and

updations in the same

file.

• Provides random as
well

as sequential access
of

• Use of relative

files is restricted

to disk devices.

• Records can be

of fixed length

only.

• For

random access of

records, the

relative record

number must be

known

in

advance.

• Every location in the

table either stores a

record or is marked

as FREE.

records with low
overhead.

• New records can be

easily added in the free

locations based on the

relative record number of

the record to be inserted.

• Well suited for
interactive

applications.

• Indexed Sequential File Organization

Indexed sequential file organization stores data for fast retrieval. The

records in an indexed sequential file are of fixed length and every

record is uniquely identified by a key field. We maintain a table

known as the index table which

Record

number

Address of the

Record

1 765 Record

2 27 Record

3 876 Record

4 742 Record

5 NULL

6 NULL

7 NULL

8 NULL

9 NULL

stores the

record number

and the address

of all the

records. That is

for every file,

we have an

index table. This

type of file

organization

is called as

indexed

sequential file

organization

because

physically the

records may be

stored

anywhere, but

the index table

stores the

address of those

records.

The ith entry in

the index table points to the ith record of the file. Initially, when the

file is created, each entry in the index table contains NULL. When the

ith record of the file is written, free space is obtained from the free

space manager and its address is stored in

the ith location of the index table.

Now, if one has to read the 4th record, then there is no need to

access the first three records. Address of the 4th record can be

obtained from the index table and the record can be straightaway

read from the specified address (742, in our example). Conceptually,

the index sequential file organization can be visualized as shown in

figure.

An indexed sequential file uses the concept of both sequential file

uses the concept of both sequential as well as relative files. While

the index table is read sequentially to find the address of the desired

record, a direct access is made to the address of the specified record

in order to access it randomly.

Indexed sequential files perform well in situations where

sequential access as well as random access is made to the data.

Indexed sequential files can be stored only on devices that support

random access, for example, magnetic disks. For example, take an

example of a college where the details of students are stored in an

indexed sequential file. This file can be accessed in two ways:

• Sequentially-to print the aggregate marks obtained by

each student in a particular course or

• Randomly-to modify the name of a particular student.

The Table below summarizes the features, advantages, and

disadvantages of indexed sequential file organization.

Features Advantages Disadvantages

• Provides fast data

retrieval.

• Records are of fixed
length.

• Index table stores the

address of the records in

the file.

• The ith entry in the index

table points to the ith

record of the file.

• While the index table is
read

• The key

improvement is that

the indices are small

and can be

searched quickly,

allowing the

database to access

only the records it

needs.

• Supports

applications that

require both

• Indexed sequential

files can be stored

only on disks.

• Needs extra space

and overhead to

store indices.

• Handling these

files is more

complicated

than handling

sequentially to find the

address of the desired

record, a direct access is

made to the address of the

specified record in order to

access it randomly.

batch and

interactive

processing.

• Records can

be accessed

sequential files.

• Supports only

fixed length

records.

• Indexed sequential files

perform well in situations

where sequential access as

well as random access is

made to the

data.

sequentially as

well as randomly.

• Updates the

records in the same

file.

HASHING

The search time of each algorithm discussed so far depends

on the number n of elements in the collection S of data. This section

discusses a searching technique, called hashing or hash addressing,

which is essentially independent of the number n.

The terminology which we use in our presentation of hashing

will be oriented toward file management. First of all, we assume that

there is a file F of n records with a set K of keys which uniquely

determine the records in F. Secondly, we assume that F is maintained

in memory by a table T of m memory locations and that L is set of

memory addresses of the locations in T. For notational convenience,

we assume that the keys in K and the addresses in L are (decimal)

integers. (Analogous methods will work with binary integers or with

keys which are character strings, such as names, since there are

standard ways of representing strings by integers.)

The subject of hashing will be introduced by the following example.

Example:

Suppose a company with 68 employees assigns a 4-digit employee number

to each employee which is used as the primary key in the company‘s employee file.

We can, in fact, use the employee number as the address of the record in memory.

The search will require no comparisons at all. Unfortunately, this technique will

require space for 10,000 memory locations, whereas space for fewer than 30 such

locations would actually be used. Clearly, this tradeoff of space for time is not worth

the expense.

The general idea of using the key to determine the address of a

record is an excellent idea, but it must be modified so that a great

deal of space is not wasted. This modification takes the form of a

function H from the set K of keys into the set L of memory addresses.

Such a function,

H: K L

is called a hash function or hashing function. Unfortunately, such

a function H may not yield distinct values: it is possible that two

different keys k1 and k2 will yield the same hash address. This

situation is called collision, and some method must be used to

resolve it. Accordingly, the topic of hashing is divided into two parts:

(1) hash functions and (2) collision resolutions. The two parts are

discussed separately.

1. Hash Functions

The two principal criteria used in selecting a hash function H: K L

are as follows. First of all, the function H should be very easy and

quick to compute. Secondly the function H should, as far as possible,

uniformly distribute the hash addresses throughout the set L so that

there are a minimum number of collisions. Naturally, there is no

guarantee that the second condition can be completely fulfilled

without actually knowing beforehand the keys and addresses.

However, certain general techniques do help. One technique is to

―chop‖ a key k into pieces and combine the pieces in some way to

form the hash address H(k). (The

term ―hashing‖ comes from this technique of ―chopping‖ a key into pieces.)

We next illustrate some popular hash functions. We

emphasize that each of these hash functions can be easily and

quickly evaluated by the computer.

• Division method

Choose a number m larger than the number n of keys in K. (The

number m is usually chosen to be a prime number or a number

without small divisors, since this frequently minimizes the number of

collisions.) The hash functions H is defined by

H(k)=k(mod m) or H(k)=k(mod m)+1

Here k (mod m) denotes the remainder when k is divided by m. The

second formula is used when we want the hash addresses to range

from 1to m rather than from 0 to m-1.

• Midsquare method

The key k is squared. Then the hash function H is defined by

H(k)=l

Where l is obtained by deleting digits from both ends of k2. We

emphasize that the same positions of k2 must be used for all of the

keys.

• Folding method

The key k is partitioned into a number of parts, k1 , kr, where each part, except

possibly the last, has the same number of digits as the required

address. Then the parts are added together, ignoring the last carry.

That is,

H(k)=k1+k2++kr

Where the leading-digit carries, if any, are ignored. Sometimes, for

extra ―milling‖, the even-numbered parts, k2,k4, , are each reversed

before the addition.

Example

Consider the company in the above Example, each of whose 68 employees is

assigned a unique 4-digit employee number. Suppose L consists of 100 two-digit

addresses: 00, 01, 02,, 99. We apply the above hash functions to each of the

following employee

numbers:

• Division method

3205, 7148, 2345

Choose a prime number m close to 99, such as m=97. Then H(3205)=4,

H(7148)=67, H(2345)=17

That is, dividing 3205 by 97 gives a remainder of 4, dividing 7148 by 97 gives

a remainder of 67, and dividing 2345 by 97 gives a remainder of 17. In the case

that the memory addresses begin with 01 rather than 00, we choose that the

function H(k)=k(mod m)+1 to obtain:

H(3205)=4+1=5, H(7148)=67+1=68,
 H(2345)=17+1=18

• Midsquare method

The following calculations are performed:

k: 3205 7148

2345

k2: 10 272 025 51 093 904 5

499 025

H(k): 72 93

99

Observe that the fourth and fifth digits, counting from the right, are chosen for

the hash address.

• Folding method

Chopping the key k into two parts and adding yields the following hash
addresses:

H(3205)=32+05=37, H(7148)=71+48=19,
 H(2345)=23+45=68

Observe that the leading digit 1 in H(7148) is ignored. Alternatively, one

may want to reverse the second part before adding, thus producing the following

hash addresses:

H(3205)=32+50=82, H(7148)=71+84+55,

 H(2345)=23+54=77

• Collision Resolution

Suppose we want to add a new record R with key k to

our file F, but suppose the memory location address H(k) is already

occupied. This situation is

called collision. This subsection discusses two general ways of

resolving collisions. The particular procedure that one chooses

depends on many factors. One important factor is the ratio of the

number n of keys in K (which is the number of records in F) to the

number m of hash addresses in L. this ratio,

ƛ=n/m, is called the load factor.

First we show that collisions are almost impossible to avoid.

Specifically, suppose a student class has 24 students and suppose

the table has space for 365 records. One random hash function is to

choose the student‘s birthday as the

hash address. Although the load factor ƛ=24/365=7% is very small, it

can be shown that there is a better than fifty-fifty chance that two

of the students have the same birthday.

The efficiency of a hash function with a collision resolution procedure is

measured by the average number of probes (key comparisions)

needed to find the location of the record with a given key k. The

efficiency depends mainly on

the load factor ƛ. Specifically, we are interested in the following two quantities:

S(ƛ)= average number of probes for a successful
search.

U(ƛ)= average number of probes for a unsuccessful search.

These quantities will be discussed for our collision procedures.

Open Addressing: Linear Probing and Modifications

Suppose that a new record R with a key k is to be added to

the memory table T, but that the memory location with hash address

H(k)=h is already filled. One natural way to resolve the collision is to

assign R to the first available location following T[h]. (We assume

that the table t with m locations is circular, so that T[1] comes after

T[m].) Accordingly, with such a collision procedure, we will search for

the record R in the table T by linearly searching the locations T[h],

T[h+1], T[h+2],......until finding R or meeting an empty location,

which indicates an unsuccessful search.

The above collision resolution is called linear probing. The average

numbers of probes for a successful search and for an unsuccessful

search are known to be the following respective quantities:

 and

U(ƛ)=

(Here = n/m is the load factor.)

Example

Suppose the table T has 11 memory locations, T[1], T[2],.......,

T[11], and suppose the file F consists of 8 records, A, B, C, D, E, X,

Y, and Z, with the following hash addresses:

Record: A, B, C,
D, E, X, Y, Z

H(k): 4, 8, 2, 11, 4, 11, 5, 1

Suppose the 8 records are entered into the table T in the above

order. Then the file F will appear in memory as follows:

Table T: X, C, Z, A, E, Y, _, B, _, _, D

Address: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

Although Y is the only record with hash address H(k)=5, the record

is not assigned to T[5], since T[5] has already been filled by E

because of a previous collision at T[4]. Similarly, Z does not appear

in T[1].

The average number S of probes for a successful search follows:

S= =1.6

The average number U of probes for a unsuccessful search follows:

U= =3.6

The first sum adds the number of probes to find each of the 8

records, and the second sum adds the number of probes to find an

empty location for each of the 11 locations.

One main disadvantage of linear probing is that records tend to cluster, that is,

appear next to one another, when the load factor is greater than

50 percent. Such a clustering substantially increases the average

search time for a record. Two techniques to minimize clustering are

as follows:

Quadratic probing

Suppose a record R with key k has the hash address H(k)=h. Then,

instead of searching the locations with addresses h, h+1, h+2,....., we

linearly search the locations with addresses

h, h+1, h+4, h+9, h+16,........h+i 2,.....

If the number m of locations in the table T is a prime number, then

the above sequence will access half of the locations in T.

Double hashing

Here a second hash function H‘ is used for resolving a collision, as

follows. Suppose a record R with key k has the hash addresses

H(k)=h and H‘(k)=h‘≠m.

Then we linearly search the locations with addresses

h, h+h‘, h+2h‘, h+3h‘,....

If m is a prime number, then the above sequence will access all the

locations in the table T.

Remark: One major disadvantage in any type of open addressing

procedure is in the implementation of deletion. Specifically, suppose

a record R is deleted from the location T[r]. Afterwards, suppose we

meet T[r] while searching for another record R‘. This does not

necessarily mean that the search is unsuccessful. Thus, when

deleting the record R, we must label the location T[r] to indicate that it

previously did contain a record. Accordingly, open addressing may

seldom be used when a file F is constantly changing.

